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Chapter 1 Introduction  

The potential energy curve is among the main concepts in molecular physics and particularly for 

diatomic molecules. It is very difficult even to mention all studies which rely on some knowledge 

of the potential functions. Relatively recently, however, the need for accurate potential energy 

curves (PEC) appeared. In our opinion, it is not the spectroscopic community who gradually 

realized the advantages which the potentials offer compared to the more traditional molecular 

constants. It is just the emergence of easily available powerful computers in the late 90’s of the 

20th century. Before that time, theoretical potential curves were calculated on big machines, but 

their use was limited to calculation of Frank-Condon and some basic molecular properties, because 

their accuracy was not sufficient to model the experimental spectra.  

Some methodology for solving the inverse problem, i.e. spectra → potential was developed 

already in 1930’s by Rydberg, Klein and Rees [1], [2]. Although semiclassical, this procedure was 

the only one widely used by spectroscopists until 1990’s because it was simple to use but also 

quite accurate compared to the ab initio curves. Another, fully quantum mechanical procedure 

appeared in 1970’s by W. Kosman and J. Hinze and C. Vidal and H. Scheingraber [3], [4]. 

Unfortunately, the ideas in these early papers were not successfully realized, although some 

attempts have been made.   

In the late 1990’s several groups realized that the power of personal computers became 

sufficient to solve some of the inverse problems. Moreover, since these computers were already 

widely spread it was possible to distribute the derived empirical potentials and also computer codes 

within the community, so that the potential curves may become a standard tool for modeling 

molecular spectra, like the molecular constants until then. Among the advantages of the potential 

curve approach over the one with molecular constants one should mention: 

• Possibility to calculate both energies of levels and intensities of spectral lines. 

• PECs have known asymptotic behavior and therefore better extrapolation properties. 

Empirical curves may be compared and/or extended by ab initio calculations. 

• PECs are applicable to electronic states with irregular shapes, very different from Morse 

potential. 

• More consistent approach to model perturbations in spectra because various matrix 

elements may easily be calculated. 

• PECs are directly applicable in scattering calculations.  

This advance in molecular spectroscopy coincided with the rapid development of laser 

colling and trapping of atoms (Nobel Prize in Physics, 1997). Understanding the interactions 

between cold atoms at very low temperatures became extremely important, thus the need for 

accurate potential curves close to the corresponding atomic asymptotes. Many approaches, based 
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on the purely long-range dispersion form of the potential have been developed (for example [5], 

[6] and references therein). 

The long-range part of the potentials has been extensively studied also by spectroscopists. 

Already in 1970’s LeRoy and Bernstein [7] proposed a formula with molecular constants suitable 

to fit the near asymptotic levels of a diatomic molecule – the so called Near-Dissociation-

Expansion (NDE) ((2.74)- in the Thesis). Some of these constants were related to the long-range 

coefficients (C3, C6 etc.) so this formalism builds a bridge between the spectroscopic observations 

(line frequencies, level energies) and the dispersion coefficients, which determine the interaction 

between the atoms at large internuclear distances. 

The long-range part of the potential may be approximated with various mathematical 

expressions. They will be discussed later in the thesis. The most important part comes from the 

interaction of the various induced multipole moments: 

 

𝑈𝐿𝑅(𝑅) = 𝐷𝑒 −∑
𝐶𝑛
𝑅𝑛

𝑛

 

 

(1.1) 

and it is, perhaps, the only part of the molecular potential for which a realistic expression may be 

derived.  At smaller R other interactions contribute to the potential which depend on the electron 

configuration of the atoms and all associated interactions: Coulomb, spin-orbit, spin-spin and 

others. No physical models are available in this region, except for that near the minimum, the 

potential may be approximated with a parabola and on this approximation the concept of 

equilibrium molecular constants is based.  

Within the thesis several analytic functions are presented, frequently used to model the shape 

of regular, Morse-like potentials. In some of them the function asymptotically approaches the long-

range formula as 𝑅→∞. In another, the short-range potential function is truncated at some 

intermediate R and then the long-range part is attached in a continuous manner. Both approaches 

are discussed within the thesis. The question is how reliably one can determine the long-range part 

of the potential from limited sets of experimental data, which we usually have at our disposition. 

The importance of this question cannot be underestimated because the derived potential curves are 

used not only to model and to reproduce the experimental data. Often the potential can be used in 

other groups to calculate photoassociation rates, scattering lengths, Feschbach resonances and so 

on. They need to know how reliable the fitted potential is. Unfortunately, often the derived 

potentials are published as they are and no reliable estimates on their accuracy are available. At 

the same time, such estimates are not trivial at all. The connection between the potential function 

and the experimental energies is complex and the error-propagation analysis is not trivial. The fit 

is highly non-linear since the experimental observations are modelled not directly by the fitted 

function, but through the solutions of the radial Schrödinger equation, where the potential function 

is inserted. However, the Schrödinger equation itself is an approximation and the accuracy of the 

modern spectroscopy is high enough to detect various deviations from this approximation. In some 
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cases, the deviations may be accounted for effectively, in other cases – the approximation of the 

single Schrödinger equation fails, and the observations should be modelled via coupled channels 

calculations. So, building a physically consistent model is already a challenge which requires 

sufficient experience.  

Once the model is adopted, error analysis may be carried out. Here problems are two. First, 

whether to use the matrix of variances and covariances, as in the usual linear fits, or to arrange a 

more sophisticated (and more time consuming) techniques like Monte-Carlo. The second, and a 

more general problem, do we estimate the uncertainty of the potential curve (or its dissociation 

energy, or the C6 coefficient) or we estimate the uncertainty within the adopted functional form. 

For example, we may fit experimental data with a Morse function and then we may determine the 

uncertainty of the dissociation energy De. This uncertainty, however, is associated with the Morse 

function (and the experimental data) and does not come ONLY from the experimental data. This 

is the problem of model dependencies of the error estimates. In the ideal situation, we would like 

to report uncertainties which are (at least to a great extent) free from the choice of potential 

function. Having this in mind, we are going to determine the: 

Goals of the thesis  

Among the potential functions in the literature, we select the Morse/Long-Range model [8] which 

has a built-in long-range behavior and is discussed for having good extrapolation properties. We 

will examine these properties by fitting high quality experimental data on the ground state of Ca 

dimer. This state was studied experimentally already in 2002 [9] and 2003 [10]. Additionally high-

quality estimates on the dispersion coefficients are available from different theoretical [11] and 

experimental sources [12], [13], [10].  The 40Ca2 ground state has no hyperfine structure (nuclear 

spin for 40Ca is I=0) and all excited states are well separated, so the single channel approach has 

already been shown to be very adequate.  

(i) We need to develop methodology how to estimate the uncertainties of the main fitted 

long-range potential parameters: dissociation energy De and leading dispersion coefficient C6 

associated ONLY with the accuracy and the composition of the experimental data and NOT with 

the choice of MLR model. 

If we manage to estimate the real uncertainties, then we may ask questions about the 

extrapolation properties of the MLR form.  

(ii) How the uncertainties of De and C6 can from the matrix of variances and covariances can 

be compared with the real uncertainties?  

(iii) How accurately one can determine De and C6 given a limited set of experimental data? 

The built in long-range form in MLR suggests that these estimates should be more accurate than 

by other potential forms. 
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Often experimental data can be combined with theoretical calculations to make better 

spectroscopic models. For example, the knowledge of C8 and C10 from the theory, even to within 

10-20 % uncertainty may help to improve the uncertainty of De and C6 significantly.  

(iv) So, we will study the uncertainties of De and C6 depending on the composition of the 

long-range model (the number of long-range coefficients) and we will study to which extent the 

theoretical predictions may reduce the uncertainties. 

  



7 

 

 

Theory  

Chapter 2 Energy levels of diatomic molecules  

In this chapter the main concepts and the theory behind the energy levels structure of diatomic 

molecules are presented.  

It is shown that by separating of radial and angular variables (similarly to the case of hydrogen 

atom) the problem of a diatomic molecule can be reduced to the radial Schrödinger equation: 

 

[−
ℏ2

2𝜇

𝑑2

𝑑𝑅2
+

ℏ2

2𝜇𝑅2
(𝐽(𝐽 + 1) − Ω2) + 𝑈(𝑅)]Ψ𝑣𝐽(𝑅) = 𝐸𝑣𝐽Ψ𝑣𝐽(𝑅) 

 

(2.1) 

𝐽(𝐽 + 1) − an eigenvalue of the square of the total angular momentum operator 𝐽2  

Ω − projection of 𝑱 on the internuclear axis, 𝜈 and 𝐽 − vibrational and rotational quantum 

numbers. 𝑈(𝑅) is the potential energy curve which is the R dependent solution of the electron 

Schrödinger equation. 

Inverted Perturbation approach (IPA) 

IPA is a fully quantum mechanical method which optimizes a parametrized PEC in such a way 

that its eigen energies from the RSE agree with the experimental observations within their 

uncertainty. The method is accurate when a single channel RSE can model the experimental data. 

From the experiment we have some set of energy levels 𝐸𝜈𝐽
𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡

 and then we take an 

approximation for the PEC (ab initio or RKR), insert it in the Schrödinger equation and obtain 

𝐸𝜈𝐽
𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒: 

 

(
ℏ2

2𝜇

𝑑2

𝑑𝑅2
+ 𝑈(𝑅) +

ℏ2

2𝜇𝑅2
𝐽(𝐽 + 1)) 𝜒𝜈𝐽(𝑅) = 𝐸𝜈𝐽

𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝜒𝜈𝐽(𝑅) 

 

(2.2) 

We are searching for correction 𝛿𝑈(𝑅)𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛 to the initial potential curve such that the 

calculated levels 𝐸𝜈𝐽
𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 agree with 𝐸𝜈𝐽

𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡
 in the Least-Squares-Approximation (LSA) 

sense: 
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𝑈(𝑅)𝑇𝑟𝑢𝑒 = 𝑈0
𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 + 𝛿𝑈(𝑅)𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛 

 

(2.3) 

If the correction is small, we can write that the shift of the energy levels due to the correction 

can be calculated by using the first order of perturbation theory:  

 

∆𝐸𝜈𝐽 =< 𝜒𝜈𝐽
0 | 𝛿𝑈(𝑅)|𝜒𝜈𝐽

0 >=∑𝑎𝑖
𝑖

< 𝜒𝜈𝐽
0 | 𝛿𝑖(𝑅)|𝜒𝜈𝐽

0 > 

 

(2.4) 

Therefore, knowing the approximate vibrational wave function from the Schrödinger 

equation we can calculate this correction. The correction can be written as a linear combination of 

some known basis function 𝛿𝑖(𝑅). 

 

𝛿𝑈(𝑅) =∑𝑎𝑖
𝑖

𝛿𝑖(𝑅) 

 

(2.5) 

These 𝛿𝑖(𝑅) are known function, and 𝑎𝑖 are unknown coefficients. 

So, we see that the correction for energy level due to the change of the potential curve can 

be written as a linear combination of some known quantities < 𝜒𝜈𝐽
0 | 𝛿𝑖(𝑅)|𝜒𝜈𝐽

0 >. 

The experimental energy should be equal to the corrected energy levels so: 

 

𝐸𝜈𝐽
𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡 = 𝐸𝜈𝐽

0 𝑎𝑝𝑝𝑟𝑜𝑥 + Δ𝐸𝜈𝐽 = 𝐸𝜈𝐽
0 +∑𝑎𝑖

𝑖

< 𝜒𝜈𝐽
0 | 𝛿𝑖(𝑅)|𝜒𝜈𝐽

0 > 

 

(2.6) 

Finally, the problem is reduced to a solution of system of linear equations in LSA sense:  

 

𝐸𝜈𝐽
𝑒𝑥𝑝𝑒 − 𝐸𝜈𝐽

0 𝑎𝑝𝑝𝑟𝑜𝑥 = Δ𝐸𝜈𝐽 =∑𝑎𝑖
𝑖

 𝐾𝜈𝐽𝑖 ↔ �⃗� = 𝐴 ∙ 𝑎  

 

(2.7) 

The solution 𝑎  gives us a better approximation for the PEC 𝑈1(𝑅) = 𝑈0(𝑅) + ∑ 𝑎𝑖𝑖 𝛿𝑖(𝑅) 

and the whole procedure may be repeated until a sufficient agreement with the experiments is 

reached. 

Generally U(R) and 𝛿𝑈(𝑅) can have arbitrary functional form, like in the original papers by 

Kosman and Hintze [3] and Vidal and Scheingraber [4]. However, then the question arises how to 

add them and to work with a single function. 
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If we have a flexible functional form which is able to represent the searched PEC, 𝑈(𝑅, 𝑎 ), 

it is possible to derive a simple expression for the correction 𝛿𝑈(𝑅) by writing the Taylor series: 

 

𝑈(𝑅, 𝑎 ) ≈ 𝑈(𝑅, 𝑎 0) +∑
𝜕𝑈(𝑅)

𝜕𝛼𝑖
𝑖

(𝑎 − 𝑎𝑖
0) 

 

(2.8) 

Here  𝑈(𝑅, 𝑎 0) is the initial potential PEC and:  

 

𝛿𝑈(𝑅) =∑
𝑈(𝑅, 𝑎 0)

𝜕𝑎𝑖
𝑖

∙ (𝑎𝑖 − 𝑎𝑖
0) 

 

(2.9) 

Obviously  𝛿𝑖(𝑅) =
𝑈(𝑅,�⃗� 0)

𝜕𝑎𝑖
 and we search for the correction ∆𝑎 𝑖 = 𝑎 𝑖 − 𝑎 𝑖

0 

Long range part of the PEC  

It is suitable to divide the potential into three important parts short-range, intermediate-range 

and long-range. In the intermediate range, around the equilibrium distance, the covalent bond 

dominates. At short internuclear distances, nuclear repulsion is important, and it corresponds to 

the steep repulsive wall of the PEC. The long-range (LR) starts from a sufficiently large R and 

goes to infinity, where the atoms do not interact, and the electronic wave function is a product of 

the atomic wave functions. At smaller R the strict limit for the LR is difficult to define, but 

approximately it is the distance at which the atomic wave functions start to overlap significantly. 

The interactions in the LR region are mainly due to various electric multipole moments 

which the atoms induce in each other through weak Coulomb interactions [14]. The most important 

are the dipole, quadrupole and the octupole moments. 

Then, by using the second order perturbation theory one can show that the general form of 

the long-range potential is: 

 

𝑈𝐿𝑅(𝑅) = 𝐷𝑒 −∑
𝐶𝑛
𝑅𝑛

𝑛

 

 

(2.10) 

where 𝐷𝑒 is the energy of the atomic asymptote; 𝐶𝑛 are the so-called dispersion coefficients 

(Long range coefficients); R is the internuclear distance. The type of the leading dispersion 

coefficient depends on the atomic state to which the molecule dissociates. A detailed information 

on the prevalent terms in the expansion may be found in [15].  
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The long-range coefficients are the subject of both theoretical calculations [16], [17], [18], 

[19] and experimental research [10], [20]. Their importance cannot be underestimated, because 

they are related to the only part of the molecular potentials for which an accurate analytic 

functional form (2.10) exists. Often the question arises where exactly the long-range part of the 

potential starts? Strict answer cannot be given, but R. J. LeRoy in [15] suggested a quantitative 

criterion to determine the value of internuclear distance to make valid the expansion (2.10). The 

long-range expansion is expected to be valid for atomic separation larger than the so-called LeRoy 

radius 𝑅𝐿𝑅, given by: 

 

𝑅𝐿𝑅 = [〈𝑟
2〉
𝐴

1
2 + 〈𝑟2〉𝐵

1
2 ] 

 

(2.11) 

where 〈𝑟2〉
1

2 is the square root of the mean value of the squared radius of the external electron 

of the atom.  
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Chapter 3 Experimental determination of PECs  

Motivation 

As already said the potential energy curve is a zero-approximation concept to model the energy 

levels of a diatomic molecule. In many cases, this approach is fairly accurate and allows to 

reproduce the experimental observations to within 0.01 − 0.001 cm−1, i.e. about 1 𝑝𝑝𝑚. 

Moreover, the model can be readily extended by coupling several electronic states considering 

various perturbations and achieving similar and even better accuracy [21], [22], [23], [24].  

This chapter of the thesis is devoted to various mathematical expressions used to express a 

PEC as a function of R and some model parameters {𝛼𝑖}, which need to be adjusted in such a way 

that the PEC reproduces the experimental observations 𝐸𝜈𝐽
𝑒𝑥𝑝

 within their uncertainty. The 

connection between 𝛼𝑖  and 𝐸𝜈𝐽
𝑒𝑥𝑝

 is through the radial Schrödinger equations, so by default the fit 

is not a linear one and one needs to care about all possible problems, associated with the non-linear 

curve fitting.   

General requirements to the empirical Potential curves 

The first and obvious requirement to the mathematical expression for 𝑈(𝑅, 𝑎) is to be flexible 

enough and to be able to precisely approximate any realistic shape. In Figure 3. 1 one can see as 

example the adiabatic potential energy curves for the first ten 1Σ+ electronic states of the KRb.  
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Figure 3. 1: Adiabatic potential energy curves for the (1–10)

 1Σ+ electronic states of the KRb molecule from 

[25]. 

Within this example one may see curves with “regular”, Morse-like shapes, PEC with 

repulsive asymptote and a barrier (the (3)1Σ+ state), states with “shelf” region (the (5) and (6) 1Σ+ 

state), double minima (the (7)1Σ+ state) and other even more complex shapes. 

Obviously, too simple models like the Morse potential: 

 
𝑈𝑀𝑜(𝑅) = 𝐷𝑒[1 − 𝑒

−𝛽(𝑅−𝑅𝑒)]2, 
 

(3. 1) 

parametrized with only 3 parameters, are too rigid to fit even the “regular” ground state 

potentials. On the other extremum are the infinite expansions over basis functions (preferably 

orthogonal) like the Dunham expansion of the PEC: 

 

𝑈(𝑅) =∑𝑎𝑖
(𝑅 − 𝑅𝑒)

𝑅𝑒

𝑖∞

𝑖=0

 

 

(3. 2) 

They are flexible, but also useless, because infinite summation is impractical.  

The second requirement to the model PECs is to ensure the proper asymptotic behavior, 

namely: 

 

𝑈(𝑅)
𝑅→∞
→   const 

 

(3. 3) 
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𝑈(𝑅)
𝑅→0
→  ∞ 

 

(3. 4) 

The third requirement, although not strictly necessary, is that the potential curve should be 

smooth and differentiable. The radial Schrödinger equation may be solved also with non-smooth 

and not differentiable potentials. However, the nature of the problem, the Born-Oppenheimer 

approximation, which allows to separate the electrons motion from that of the nuclei, assumes 

slow variation of the electron energy over R. From a practical point of view, most of the numerical 

methods used for solving the RSE are much more effective and accurate if the PEC is smooth and 

differentiable. 

R.J. LeRoy [8] also tries to provide some guidelines on the well-behaved forms to be used 

for potential energy curves. According to [8] function like this should satisfy the following criteria: 

• It must be flexible enough to indicate very extensive, high-resolution data sets of 

experimental accuracy.  

• It must be well-behaved, with no false extrapolation behavior outside the region where 

the experimental data are most sensitive.  

• It must be smooth continuous everywhere and incorporate the correct theoretically 

known limiting behavior at large distances. 

• It should be compact and portable and be defined by a relatively small number of 

parameters.  

It is difficult to fulfil all these requirements in a single potential form. Actually, no such 

model has been proposed in the literature so far. The analytic models easily fulfil the third 

requirement, however it is difficult to combine flexibility and proper asymptotic behavior. 

Numerical, e. g. point-wise models are very flexible, but have no well-defined asymptotic behavior 

and are no differentiable. In the next section some of the successful models used in the literature 

are presented. 
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Analytic potentials 

In this chapter of the thesis several analytic potential forms are presented in detail. These are: 

• Morse potential 

• Lenard-Jones potential 

• Expanded Morse oscillator 

• Morse-Lenard-Jones potential 

• Morse/Long-range potential 

• Chebyshev polynomials 

• Hannover polynomials 

• Spline point-wise form 

 In the Abstract, only the MLR form is discussed. 

Morse-Long-Range 

The Morse-Long-Range function is based on the MLJ (see Section 3.3.4 in the Thesis) by adding 

desired inverse power long-range behavior. The general form of MLR potential is [12], [8]:  

 

𝑉𝑀𝐿𝑅(𝑟) = 𝐷𝑒 (1 −
𝑈𝐿𝑅(𝑟)

𝑈𝐿𝑅(𝑟𝑒)
𝑒−𝛽(𝑟)∙𝑦𝑝

𝑒𝑞
(𝑟))

2

 

 

(3. 5) 

where 

 

𝑦𝑝
𝑒𝑞(𝑟) =

𝑟𝑝 − (𝑟𝑒)
𝑝

𝑟𝑝 + (𝑟𝑒)
𝑝
 

 

(3. 6) 

 

𝑦𝑝
𝑟𝑒𝑓(𝑟) =

𝑟𝑝 − (𝑟𝑟𝑒𝑓)
𝑝

𝑟𝑝 + (𝑟𝑟𝑒𝑓)
𝑝

 

 

(3. 7) 

 

𝛽(𝑟) = 𝛽𝑀𝐿𝑅(𝑟) = 𝑦𝑝
𝑟𝑒𝑓(𝑟)𝛽∞ + [1 − 𝑦𝑝

𝑟𝑒𝑓
(𝑟)]∑𝛽𝑖[𝑦𝑞

𝑟𝑒𝑓(𝑟)]𝑖
𝑁

𝑖=1

 

 

(3. 8) 

 

𝑢𝐿𝑅(𝑟) =
𝐶𝑚1
𝑟𝑚1

+
𝐶𝑚2
𝑟𝑚2

+⋯, 

 

(3. 9) 
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and  

 

𝛽∞ ≡ lim
𝑟→∞

{𝛽(𝑟) ∙ 𝑦𝑃
𝑒𝑞(𝑟)} = lim

𝑟→∞
{𝛽(𝑟)} = ln (

2𝐷𝑒
𝑢𝐿𝑅(𝑟𝑒)

) 

 

(3. 10) 

The idea behind the variables 𝑦𝑃
𝑒𝑞(𝑟) and 𝑦𝑝

𝑟𝑒𝑓(𝑟)  can be seen in Figure 3. 2. 

 

Figure 3. 2: Plot of the radial variables yeq(r) (solid curves) and yref(r) (dashed curves) for various p. 

The 𝑦(𝑟) variable has the nice feature, that at 𝑟→ 0 and 𝑟→  it reaches finite values of ±1, 

so the coefficients in the expansion will have finite values. The usual range of experimental data 

is also indicated. It may also be shown that at large r, the y variable becomes: 

 

𝑦𝑝
𝑒𝑞 𝑅 → ∞→    1 −  2 (

𝑅𝑒
𝑅
)
𝑝

 

 

(3. 11) 

Usually, 𝑟𝑟𝑒𝑓, 𝑝, 𝑞 and 𝑁 are fixed, while β𝑖, 𝐷𝑒, 𝐶𝑚, 𝑟𝑒 may be fitted to the experimental 

data. Around its minimum (𝑟𝑒) the function retains its Morse-like character, since at 𝑟 = 𝑟𝑒  
𝑈𝐿𝑅(𝑟)

𝑈𝐿𝑅(𝑟𝑒)
= 1. At large internuclear distances 

 

𝑉𝑀𝐿𝑅(𝑟) ≃ 𝔇𝑒 − 𝑢𝐿𝑅(𝑟) + 𝒪 (
𝑢𝐿𝑅
2

4𝔇𝑒
) 

 

(3. 12) 
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And this makes the MLR function a very attractive one, combining both Morse-like behavior 

and proper long-range asymptote. The expression for 𝛽(𝑟) contains powers of r which can influence 

the asymptotic form (3. 12). Therefore, the power p must satisfy the condition [8]: 

 
𝑝 >  𝑚𝑙𝑎𝑠𝑡 − 𝑚𝑓𝑖𝑟𝑠𝑡 

 

(3. 13) 

where 𝑚𝑙𝑎𝑠𝑡 and 𝑚𝑓𝑖𝑟𝑠𝑡 are the powers of the first and the last dispersion term in the long-

range expansion. For example, 𝑚𝑓𝑖𝑟𝑠𝑡 = 6 and 𝑚𝑙𝑎𝑠𝑡 = 10, 𝑝 >  4. There are no restrictions on the 

value of q, usually its value is smaller than p. 

 
Figure 3. 3: Fitting a MLR function with 10 parameters to empirical points of the Ca2 X state [26] (solid 

circles). p=7, q=4 and  𝑟𝑟𝑒𝑓 = 5.5 Å.  For more details, see the text. 

In Figure 3. 3 we show a MLR function with p=7, q=4 and 𝑟𝑟𝑒𝑓 = 5.5 Å. A Monte-Carlo 

simulation was performed as in (Section 3.3.3 in the Thesis) by adding synthetic noise to the 

empirical points (with a standard deviation of 1 cm-1) and the resulted model parameters and their 

uncertainties were estimated. The fit virtually did not depend on C8 and C10, therefore their values 

remain unchanged. Strong correlations between the parameters exist. Their variation is 

significantly larger than the values themself.  

If we reduce the number of coefficients to 4 (see Figure 3. 4), the fitted parameters are much 

more constrained. Here C8 and C10 are fixed to zero without reducing significantly the quality of 

the fit. The value of De, however, is overestimated and the last three experimental points deviate 

significantly.  

Apparently when using the MLR functional form one should be careful with the number of 

fitted parameters. The choice of fixed parameters (𝑝, 𝑞, 𝑅𝑟𝑒𝑓) should also be taken into account 

when studying the extrapolation properties. 

Re = 4.2778 +/- 0.0017 
De = 1102.07 +/- 1.8 
U_0 = 0.0 +/- 0.0 
C6 = 11846306 +/- 7305389 
C8 = 306079000 +/- 0.0 
C10 = 8344000000 +/- 0.0 
beta 0 = -1.1528 +/- 0.12 
beta 1 = 0.0188+/- 0.5 
beta 2 = -0.268 +/- 0.98 
beta 3 = -0.191 +/- 1.6 
beta 4 = -0.468 +/- 3.5 
beta 5 = 0.247 +/- 3.1 
beta 6 = -0.89 +/- 8.2 
beta 7 = -1.20 +/- 6.8 
beta 8 = 0.7 +/- 20.7 
beta 9 = 1.9 +/- 17.8 
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Figure 3. 4: Fitting an MLR function with 4 parameters to empirical points of the Ca2 X state [26] (solid 

circles). p=7, q=4 and 𝑟𝑟𝑒𝑓 = 5.5 Å. For more details, see the text. 

Comparison of the existing methods. Advantages and disadvantages 

In this section most of the modern potential functions, used to model high resolution 

experimental observations, were presented. Depending on the application each of them has 

advantages and disadvantages and so far, no universal formula has been found. If one searches for 

a mathematically stable and flexible representation able to fit every, even an irregular shape – the 

spline point-wise functions have no competitors. All analytic potentials are smooth and 

differentiable, some of them offer proper asymptotic behavior.  

One should keep in mind that the use of particular potential form may depend also on the 

quality and the composition of the experimental data. With abundant data sets, it is the data alone 

that fixes the shape of the potential and then, point-wise model-free functions are usually adequate. 

When the dataset is sparse, the empirical PEC is not uniquely defined, and the flexible point-wise 

potentials may show oscillations. Here analytic forms are of advantage. 

The parameters of the point-wise potentials are local since they are the values of the 

potential function in the grid. The shape of the potential in every point depends only on the few 

nearby Ui parameters. This largely reduces the correlation between the potential parameters and 

makes the fits easier and more stable. In sparse data sets, this advantage turns into a problem, 

because the shape of the potential in regions badly described by the experimental data may become 

to a great extent arbitrary. The situation with the analytic potential is just the opposite. Due to 

correlations, the fitting process may be difficult, usually a good starting point is required. However, 

the shape of the fitted PEC is smooth. This property is of great advantage when extrapolating the 

potential shape in the asymptotic regions. 

Re = 4.28092 +/- 0.00086 
De = 1104.52 +/- 0.53 
U_0 = 0.0 +/- 0.0 
C6 = 17207259 +/- 424736 
C8 = 0.0 +/- 0.0 
C10 = 0.0 +/- 0.0 
beta 0 = -0.3613 +/- 0.003 
beta 1 = -0.2450 +/- 0.04 
beta 2 = -0.297 +/- 0.09 
beta 3 = 0.264 +/- 0.07 
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Chapter 4 Extrapolation properties of the MLR 

potential 

In this chapter we present the main research on which the thesis is based. Given a set of 

experimental data we want to examine how reliably one can determine the depth of the potential 

well and the leading long-range term. Of course, it is assumed that the Born-Oppenheimer 

approximation is valid (in a broad sense) and that the single-potential approach is valid. In this 

sense, it is reasonable to choose an example without perturbations and no HF interaction at the 

asymptote. 

As a testing case we chose the potential curve for the ground state of calcium dimer and the 

experimental data from [10]. The accuracy of this potential curve and especially its long-range part 

has been confirmed in a series of further studies – both from traditional spectroscopy and cold-

collision experiments (see the Methodology of the Thesis).  

In [10], Monte Carlo simulation was used to estimate the uncertainties of 𝐷𝑒, 𝐶6 and 𝐶8. 

Spline point-wise form was used for the inner part of the potential  

𝑈(𝑟) = 𝐷𝑒 −
𝐶6

𝑟6
−
𝐶8

𝑟8
−⋯  in the Thesis, and -for the outer. This approach offers a lot of flexibility, 

both sections of the potential are independent, and their shape is determined mainly through the 

experimental data. In the connection point the PECs are continuous but some of them are not 

necessarily smooth and in principle could be rejected. As already discussed, such an approach 

gives an upper estimate of the uncertainties. 

The MLR form is entirely analytic. It is smooth and more rigid than the pointwise one. If its 

built-in long-range behavior provides better extrapolation properties, we should obtain a narrower 

spread of the fitted long-range parameters given the same experimental data. It is plausible to 

believe that the whole variety of MLR potentials will cover virtually all physical potentials 

consistent with the experimental data. However, if a rigid model is not the correct one, the narrower 

spread is by no means proof that the predictions are correct. So, it is important to check whether 

different constructions of the MLR potential fitted to different subsets of the same experimental 

data lead to similar long-range parameters, close to the “true” one. In [12], data from Allard et al. 

[10] were used to derive a series of MLR potentials and the recommended one by the authors has 

the same quality as the point-wise PEC, with very similar estimate on the long-range parameters. 

The uncertainties, however, are much smaller. They were deduced from the matrix of variances 

and covariances and they did not consider possible influence of the particular realization of the 

MLR potential (the so-called model dependencies). In Table 2 from Ref. [12] one can see that 𝐷𝑒 

and 𝐶6 for different “good” potentials do not necessarily agree within the stated uncertainties. So, 
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the uncertainty of the fitted parameters alone cannot be used as a measure of how reliable the 

derived parameters are. 

Given the abovementioned considerations we plan to conduct a comprehensive study of the 

MLR functional form and to check what are its extrapolation properties given a reasonably broad 

range of fixed parameters, which determine the function. If regardless of the particular choice of 

fixed parameters, we have a compact distribution of 𝐷𝑒 and 𝐶6 we will conclude that the 

extrapolation properties are good. In the opposite case, if the variation between 𝐷𝑒 and 𝐶6 is 

significantly larger than the uncertainty from a single fit, we will conclude that the MLR itself 

cannot confine the parameters and we shall search for additional considerations to limit the results 

from the fit. Such can be for example the expected ratio (from the theory) between 𝐶6 and 𝐶8 or 

similar. 

Of course, the composition of the experimental data is crucial. It is unrealistic to expect 

experimental data with low v to lead to accurate value for 𝐷𝑒. It is natural to expect that the data 

should go beyond the LeRoy radius in order to expect somewhat reliable extrapolation. So, the 

above-mentioned studies should be conducted with different subsets of experimental data, 

gradually reducing the highest vibrational numbers. 
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Methodology of the study 

Before explaining the details of the performed study, it is important to mention again briefly 

the goal and main ideas behind it. 

The MLR potential form has a realistic built-in long-range behavior. It is plausible to expect 

that when applied to experimental data (even not covering the complete ranges of v and J) it will 

provide reasonably good estimates for the dissociation energy and the Cm coefficients. When 

speaking about the extrapolation properties of the MLR form it is necessary to consider not a single 

potential, but the whole class of curves defined by {𝑟𝑟𝑒𝑓, 𝑝, 𝑞, 𝑁, β𝑖, 𝐷𝑒, 𝐶𝑚, 𝑟𝑒}. So, it is important 

to study what is the influence of the prefixed parameters {𝑟𝑟𝑒𝑓, 𝑝, 𝑞, 𝑁} on the fitted  𝐷𝑒 and 𝐶𝑚. 

There are two ways to estimate the uncertainty of the fitted parameters. The traditional one 

is through the matrix of variances and covariances [27]. It is strictly correct when the fit is linear. 

In non-linear cases (like the one we are dealing with), the matrix of variances and covariances 

provides a reasonable estimate only when the accuracy of the experimental data lead to very steep 

c2 function and,  as a consequence, the shape of c2 may be reasonably well approximated with a 

paraboloid in the space of parameters (like in the linear case) within the estimated uncertainties of 

the fitted parameters. Even if the matrix of variances and covariances provides a reasonable 

estimate of the parameter uncertainties, it is an estimate for a given model {𝑟𝑟𝑒𝑓, 𝑝, 𝑞, 𝑁, β𝑖, 𝐷𝑒, 

𝐶𝑚, 𝑟𝑒}. If one estimates the uncertainties from another model {𝑟′𝑟𝑒𝑓, 𝑝′, 𝑞′, 𝑁′, β′𝑖, 𝐷′𝑒, 𝐶′𝑚, 𝑟′𝑒} 

it is possible that the fitted 𝐷𝑒 and 𝐶𝑚will not agree within their estimated uncertainties. These are 

the so-called model-dependences. 

The second approach is not to rely on the quasi-linearity of the fit and to use a Monte Carlo 

simulation of synthetic experimental data (as done in [10] for the Ca2 ground state). This approach, 

however, does not solve the problem with the model dependences of the estimated uncertainties. 

In this study we used the matrix of variances and covariance to estimate the parameter 

uncertainties for every fitted PEC. Then we tried to repeat this procedure for a possibly large set 

of prefixed parameters {𝑟𝑟𝑒𝑓, 𝑝, 𝑞, 𝑁} and in this way we study the effect of model dependences. 

In some cases, we directly studied the shape of c2 along one of the parameters (for example c2(C6)) 

for more realistic estimate of its uncertainty. 

 In Error! Reference source not found. the block diagram of the performed series of fits is 

shown.  

Initially we took the point-wise potential from [10], in a rather narrow range of 𝑟 ∈

 [3.1, 10.8] Å and fitted various initial MLR potentials using the betafit code from [28], using 

different combinations of 4.3 Å ≤  𝑟𝑟𝑒𝑓  ≤  6.7Å, 𝑝 ∈  [4, 9], 𝑞 ∈  [3, 5], 𝑁 ∈  [8, 11] (a total of 

nearly 300 combinations).  

All these initial curves were further refined through a IPA8 code by fitting parameters β𝑖, 
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𝐷𝑒, 𝐶𝑚, 𝑟𝑒  until the fitted PECs reproduced all the 3586 experimental frequencies (with 𝑣 ′′ ≤

 38) as close to their uncertainties as possible. As a measure of the quality of the fit we used the 

dimensionless standard deviation σ: 

 

𝜎 = √
1

(𝑛 −𝑚)
∑
(𝐸𝜈𝐽
𝑒𝑥𝑝
− 𝐸𝜈𝐽

𝑐𝑎𝑙𝑐)2

𝜎𝑣𝐽
2

𝑛

𝑖=1

 

 

(4.1) 

The fitted potential was considered as good, if σ is about 0.62 – 0.64, comparable to the 

value from previous studies (see [10], [12]). All these fits were performed by using the Python 

shell to make the fitting faster. 

These preliminary fits indicate that the correlations between 𝐷𝑒, 𝐶6 and other parameters in 

the MLR form are strong. To reduce the uncertainties of 𝐷𝑒 and 𝐶6 we performed two additional 

series of fits by fixing 𝐶10 only and 𝐶8 and 𝐶10. 

In a similar manner the simulation was repeated for three reduced data sets, namely with 

𝑣 ′′ ≤  25, 30, 35. When using point-wise potential with long-range extension [10] it was shown 

that the uncertainty of 𝐷𝑒 and 𝐶6 strongly depends on the presence of weakly bound energy levels. 

Increase of 𝑣"𝑚𝑎𝑥 from 35 to 38, reduced the uncertainties significantly. 

As a result of this first stage of this study we derived 4 groups of potentials (for each data 

set) and each group contains 3 subsets – one with all Cm fitted, one with C6 and C8 fitted and one 

with only C6 fitted. For each of these PECs the fitted parameters and their uncertainties from the 

matrix of variances and covariances were collected. 

At the second stage, we examined to which extent the uncertainties derived in the first stage 

are reliable. We plotted a one-dimensional projection of c2(C6) and compared this with the 

uncertainty from the matrix of variances and covariances. This step was much more time-

consuming. For every class of potentials (defined by 𝑟𝑟𝑒𝑓, 𝑝, 𝑞, 𝑁) we started to vary 𝐶6 with small 

steps each time refining the potential in 10 – 20 iterations. The variation of 𝐶6 was stopped when 

σ could not be reduced below 1. This second stage was performed automatically by the computer 

and as a result we collected several thousand possible combinations of long-range parameters. The 

step took 15 – 25 hours of computing time for an up-to-date personal computer.  

To enable the automatized fitting, the selection of non-zero singular values was repeated 

after every iteration accounting for the change of σ. Without the automatic procedure such 

numerical experiments with thousands of fitted PECs are not possible. We are aware that it is very 

difficult to develop a perfect algorithm for unsupervised fitting. Therefore, it is not excluded that 

some of the “bad quality” fits could have been improved by more careful man-assisted fitting 

approach. We hope that such cases are few and they will not alter the overall results of the present 

study. During the first stage, when the different (𝑟𝑟𝑒𝑓, 𝑝, 𝑞, 𝑁) curves were fitted manually we got 
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impression on how stable and straightforward the fitting process is given reasonable initial values 

of the parameters. Based on this experience we chose the steps for changing 𝐶6 in the second stage 

of the analysis such that the fit could converge in a reasonably small number of iterations. Usually, 

𝐶6 was changed in steps of 0.1% (for 𝑣𝑚𝑎𝑥 = 38) and 1% (for 𝑣𝑚𝑎𝑥 = 25).  

 

Figure 4. 1: Block-diagram of the fitting procedure. 

When using point-wise potential with long-range extension [10], it was shown that the 

uncertainties of 𝐷𝑒 and 𝐶6 strongly depend on the presence of weakly bound energy levels. 

Increase of v′′ max from 35 to 38, reduced the uncertainties significantly. If the extrapolation 

properties of the MLR potential are good, one can expect to see small variations of 𝐷𝑒 and 𝐶6 even 

for lower values of 𝑣"𝑚𝑎𝑥. How could this happen if the turning points for highest data points are 
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below the Le Roy radius? We think that due to the graduate transition between MLR and the long-

range asymptote, it is rather the short-range shape of MLR, which is forced to have a proper 

behavior within the transition region. So, when fitting data with 𝑣"𝑚𝑎𝑥 = 25 𝑜𝑟 30 it is mostly the 

𝛽𝑖 coefficients which are really fitted and the 
𝐶𝑚

𝑟𝑚⁄  plays effectively the role of regularization, 

which limits the unphysical behavior of the MLR potential at intermediate r (contrary to the MLJ 

potential, which may have an undesired maximum just beyond the range of experimental data [29]. 

During this study we tried to fit the experimental data also with MLR models with only one 

long range coefficient, 𝐶6 (not shown in Figure 4. 1), and this turns out to be possible with very 

similar fit quality. In the next section we will compare the values we have obtained, but the 

conclusion is that 𝐶8 and 𝐶10 cannot be determined from the present dataset. If added as 

parameters, they influence the fitted 𝐶6 coefficient, but their values may be fixed within a very 

broad range without changing the quality of the fit. As demonstrated in the next section, the 

uncertainty of 𝐶6 changes significantly depending on whether 𝐶8 and 𝐶10 were hold fixed or fitted. 
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Chapter 5 Results  

In this chapter the results from the fits, described in the previous chapter are presented. For each 

of the data sets from (Error! Reference source not found. in the Thesis) only potentials with 𝜎 ≤

 0.64 are selected. The potentials were fitted having all parameters, including 𝐶𝑚 coefficients, as 

free parameters. However effectively not always all combinations of parameters were fitted due to 

the SVD method. We gradually increased the number of non-zero singular values (thus including 

more and more parameters) until all parameters are treated as free or we reach values where the fit 

becomes unstable. As a result, often the values for 𝐶10 remain virtually unchanged and 𝐶8 changed 

very little. When the standard errors of the fitted parameters were estimated we did not edit the 

singular values and let the matrix of variances and covariances to be calculated from the inverse 

of the design matrix as it is. In some cases, just for estimation of the uncertainties, we fixed 𝐶8 

and/or 𝐶10 and this, as expected, led to smaller standard errors of 𝐷𝑒 and 𝐶6. 

Results for the full data set (𝑣 ≤ 38) 

 
Figure 5. 1: Distribution of 𝐶6 and 𝐷𝑒  for MLR potentials (with 𝜎 ≤  0.64) with 𝐶6, 𝐶8 and 𝐶10  parameters fitted 

up to  𝑣"𝑚𝑎𝑥 = 38 (open black squares). With open magenta diamonds we show the same distribution for MLR 

potentials with just one LR parameter, 𝐶6. The The error bars are calculated with 𝐶8 and 𝐶10 hold as fixed. (right 

pane) distribution of 𝐶6 and 𝐷𝑒  with the three LR coefficients, none of them fixed for calculating the uncertainties. 

For comparison with dashed ellipses the uncertainty limit from [10] is shown. The value from Ref. [8] is also shown 

with its uncertainty (red cross). 

Figure 5. 1 shows the distribution of possible 𝐶6 and 𝐷𝑒 (open black squares) from fits 

including all experimental data (𝜈"𝑚𝑎𝑥 = 38). Error bars indicate the calculated 𝜎 standard 

deviation from the fit. For comparison the recommended values of 𝐶6  =  (1.046 ±  0.003) ×

 107𝑐𝑚−1Å6 and 𝐷𝑒  =  1102.080 ±  0.004 𝑐𝑚
−1 from the latest study [8] obtained when fitting 
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MLR forms to the same data set (with v′′ max = 38) as here are added. The estimated uncertainties 

from [8] (also shown in Figure 5. 1 as a red point with error bars) are smaller than the region 

obtained in this study, and this demonstrates the influence of the choice of the fixed MLR model 

parameters. Under “region” we mean the area covered by the fitted points and their uncertainties.  

In the left pane the uncertainties of 𝐶6 and 𝐷𝑒 from this study are estimated, as in Ref. [8], 

when 𝐶8 and 𝐶10 are hold fixed. If they are treated as free parameters, the uncertainties in 𝐶6 and 

𝐷𝑒 increase significantly – see the right pane. In the same Figure 5. 1 we added the estimated 𝜎 

confidence regions from [10]. In this paper two values for 𝐶6 were reported. One, 𝐶6  =

 (1.003 ±  0.033) × 107𝑐𝑚−1Å6 (lower ellipse in Figure 5. 1), obtained with simple long-range 

expansion (𝑈(𝑟) = 𝐷𝑒 −
𝐶6

𝑟6
−
𝐶8

𝑟8
−⋯) and another one 𝐶6  =  (1.034 ±  0.033) × 10

7𝑐𝑚−1Å6 

(upper ellipse), when the long range model was extended by expression for the exchange energy.  

To underline the importance of the choice of the model, we also show the results from the 

present study when the MLR model was fitted with only one long range parameter – (open magenta 

diamonds). All four distributions are of similar size but shifted with respect to each other. At very 

long internuclear distances all models approach the same asymptotic form, 𝐷𝑒 −
𝐶6
𝑟6
⁄ , but the 

ways how the potential transforms for intermediate r’s is different and it is this region where 𝐷𝑒 

and 𝐶6 are coupled to the rest of the potential parameters to ensure smooth transition.  

After [10] several experimental papers addressed improved values for the Ca ground state 

𝐶6 coefficient. The most recent value can be found in the paper by E. Pachomow et al. [13], where 

results of two-colored photoassociation spectroscopy were reported. Some new bound vibrational 

states with 𝑣′′ =  38 − 40 were observed, and their unperturbed energies were determined with 

very high accuracy (𝐸40  =  1.601(1) 𝑀𝐻𝑧 and this may be compared with the prediction of the 

same energy from [10] 𝐸40 ∈   [0.1, 2] 𝑀𝐻𝑧). The long-range shape of the X state potential was 

reanalyzed, no exchange contribution was found to be necessary, but a retardation correction [11] 

to the 𝐶6 term was applied. The recommended value for 𝐶6 is 1.0348 𝑐𝑚−1Å6 (the excellent 

agreement with the second value from [10] should be a coincidence), but the authors write that no 

error limits are given for the individual long-range parameters from this work because of 

significant correlation between these parameters (caption of their Table II). It is outside the scope 

of the present thesis to study the statistical weight of different components of the long-range model 

from [13]. We will not focus on tiny differences of the 𝐶6 coefficients fitted from spectroscopic 

data, but rather on the overall extrapolation properties of the MLR potentials, especially based on 

limited data sets. 

The main result from these simulations (𝜈"𝑚𝑎𝑥 = 38) is that although the models can 

reproduce the experimental observations well the values of the fitted parameters may differ from 

model to model due to the interparameter correlations. For the moment we would conclude that 

with a limited data set it is not possible to fix in a unique way 𝐶6 and 𝐷𝑒 since their values will 

depend on whether other Cm coefficients, exchange energy or retardation effects are accounted for. 
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The model dependencies in the present case of Ca2 are stronger than the uncertainties due to the 

experimental data.  

Results for 𝑣 ≤ 35 

In Figure 5. 2 we show the obtained distribution of 𝐷𝑒 and 𝐶6 for 𝜈"𝑚𝑎𝑥  =  35. After the end of 

the fitting routine, the uncertainties of 𝐷𝑒 and 𝐶6 were calculated for two cases: both 𝐶8 and 𝐶10 

were treated as fixed parameters (upper pane) and only 𝐶10 fixed (lower pane). The correlation 

between 𝐶8 and 𝐶6 can be clearly traced by the significant increase of 𝐶6 uncertainty when 𝐶8 is 

also fitted. 

On can see that by excluding the last three experimental vibrational levels the variation of 𝐷𝑒 

increases to about ± 0.1 𝑐𝑚−1 (𝐶8 and 𝐶10 fixed), almost an order of magnitude larger compared 

to the 𝑣"𝑚𝑎𝑥 = 38 case. Similar estimate, Fig. 5 in [10], where the spline point-wise model 

extended with (𝑈(𝑟) = 𝐷𝑒 −
𝐶6

𝑟6
−
𝐶8

𝑟8
−⋯) is shown in Figure 5. 2 with an ellipse (blue dashed 

line). It should be compared with the more flexible estimations when 𝐶6 and 𝐶8 fitted, lower pane. 

The estimate of the uncertainty of the fitted parameters through the matrix of variations and 

covariations for the MLR potentials (black squares) is comparable to that in [10]. Since the 

uncertainties of 𝐶6 at least for some potential forms are of the order of its value one may doubt if 

the estimation through the matrix of variances and covariances is still valid.  

This can be checked by finding all MLR potentials which agree with the experimental data. 

Starting from about 300 different MLR potentials we varied 𝐶6 until 𝜎 could not be reduced below 

1. Altogether about 4000 PEC were fitted, of them 2500 with 𝜎 ≤   0.64. This second stage was 

performed automatically by the computer, and it took 15 – 25 hours of computing time for an up-

to-date personal computer. Fitted 𝐷𝑒 and 𝐶6 are shown in Figure 5. 3. By comparing this figure 

with Figure 5. 2 we see that while the estimate for the 𝐷𝑒 uncertainty by the variances turns out to 

be quite reasonable, the real variation of 𝐶6 is significantly smaller. The uncertainty region from 

the MLR fit is still smaller than that from the pointwise one [10].  
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Figure 5. 2: Distribution of 𝐶6 and 𝐷𝑒  for MLR potentials (with 𝜎 ≤  0.64) fitted up to  𝜈"𝑚𝑎𝑥 =  35. For 

comparison with dashed ellipse the uncertainty limit from [10] is shown. The value from Ref. [8] is also shown. In 

the upper pane 𝐶8 and 𝐶10 were fixed for calculation of the uncertainties, in the lower pane – only 𝐶10 was fixed. 
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Figure 5. 3: Distribution of 𝐶6 and 𝐷𝑒  for MLR potentials (with 𝜎 ≤  0.64) fitted up to 𝜈"𝑚𝑎𝑥  =  35 derived by 

fixing 𝐶6 within a broad range of values and refitting all other parameters. With dashed ellipse the uncertainty limit 

from [10] are shown. The value from Ref [8] is also shown.  

Results for v ≤30 and v ≤25 

 
Figure 5. 4: Distribution of 𝐶6 and 𝐷𝑒  for MLR potentials (with 𝜎 ≤  0.64) fitted up to 𝜈"𝑚𝑎𝑥 =  30 (left pane) and 

𝜈"𝑚𝑎𝑥  =  25 (right pane) derived by fixing 𝐶6 within a broad range of values and refitting all other parameters. 

The best value from Ref. [8] is also shown. Some series of MLR types are designated as MLR (𝑁, 𝑝, 𝑞, 𝑟𝑟𝑒𝑓). 
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With the more reduced data sets Figure 5. 4 (𝜈"𝑚𝑎𝑥 =  25 and 𝜈"𝑚𝑎𝑥 =  30) the uncertainties of 

𝐶6 from the fit are even larger and we prefer to estimate them by varying 𝐶6 as done for 𝜈"𝑚𝑎𝑥 =

 35.  

For 𝜈"𝑚𝑎𝑥 =  30 we constructed about 6200 PECs, 3500 of them with 𝜎 ≤  0.64, for 𝜈"𝑚𝑎𝑥 =

 25 the number of fitted curves was 7800, about 5000 of them with 𝜎 ≤  0.64. The variation of 𝐶6 

was stopped when it significantly exceeded its initial value (by about 80 %) although for some 

potentials 𝜎 ≤ 0.64 still could be reached. Apparently for the present data sets the value of 𝐶6 may 

be virtually arbitrary. Here we should mention that the turning points of 𝜈" =  25 is about 7.6 Å 

and for 𝜈" =  30 – about 9.0Å ,  and both values are smaller than the Le Roy radius for the Ca2 

ground state (about 9.4 Å), so it is not surprising that the uncertainty of 𝐶6 is so large. The estimate 

of 𝐷𝑒, however, is very reasonable and is within about ±1.5𝑐𝑚−1  for 𝜈"𝑚𝑎𝑥 =  30 and ±5 𝑐𝑚−1 

for 𝜈"𝑚𝑎𝑥 =  25, and we believe this is the main result of present study. 

By using a reasonably wide range of MLR parameters N, p, q and 𝑟𝑟𝑒𝑓 and also by varying 𝐶6 

much beyond the expected theoretical estimate, all “good” potentials (𝜎 ≤ 0.64) predict a pretty 

consistent value for 𝐷𝑒, which is also very close to the best-known experimental result. If the 

variation of 𝐶6 is limited to within the expected few percent of the theoretical estimate, the 

uncertainty in 𝐷𝑒 could be significantly reduced. Some series of MLR potentials have 𝐷𝑒 and 𝐶6, 

which obviously deviate from the main distribution. Both for 𝜈"𝑚𝑎𝑥 =  25 and 𝜈"𝑚𝑎𝑥 =  30 these 

are the types MLR (𝑁 =  10, 𝑝 =  7, 𝑞 =  3, 𝑟𝑟𝑒𝑓 =  6.70) and MLR (𝑁 =  10, 𝑝 =  7, 𝑞 =  3,

𝑟𝑟𝑒𝑓 =  6.90) (indicated in Figure 5. 4). The larger 𝑟𝑟𝑒𝑓 the slower y(r) tends to 1 as r increases, so 

the correlation with 𝐶6 is stronger. Given 𝑅𝑒 4.3 Å and the outermost turning point for  𝜈"𝑚𝑎𝑥 =

 25 about 7.6 Å makes the choice 𝑟𝑟𝑒𝑓 =  6.7 Å or even 6.9 Å unrealistic, though possible. 

Therefore, in practice one could ignore potential types with such large 𝑟𝑟𝑒𝑓. 
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Chapter 6 Conclusions 

The extrapolation properties of the analytic potentials had been addressed almost 

immediately after they were applied to data approaching the dissociation range. The initial results 

using simpler potential forms were not as good, because when the functions become flexible 

enough to fit the experimental data, the extrapolation becomes also unreliable.  

We agree with Ref. [8] that the MLR potential may be a reasonable compromise when 

experimental data approach the dissociation limit. Some successful applications and the current 

study already confirm this, but only the experience collected in many different studies will enable 

the researchers to form a final opinion.  

The numerical experiments presented in this paper aim to assess the extrapolation properties 

of the MLR potential form in a more general way, compared to [12] and [8]. The only criterium 

for the quality of the potential curve is the agreement with the available set of experimental data. 

The MLR potentials can be divided into classes with different values of 𝑟𝑟𝑒𝑓 , 𝑝, 𝑞 𝑎𝑛𝑑 𝑁. We did 

not study all possible combinations of these parameters, but set some reasonable limits, discussed 

already in [12] and [8]. The value for 𝑟𝑟𝑒𝑓 should be close to the equilibrium distance, 𝑝 and 𝑞 

should be some small integers and 𝑝 +  6 should be no smaller than 10 (6 being the power of the 

leading dispersion coefficient 𝐶6, 10 – the power of the last coefficient, 𝐶10). The number of 𝛽 

terms was kept small, just about the necessary number needed to achieve a good fit. With only 

these limitations we observed that the MLR form converges very close to the best estimate for the 

dissociation energy, even when extrapolating from relatively low 𝑣′′ experimental data (the 

binding energy for 𝑣′′ =  25 is approximately 1010 𝑐𝑚−1 , the energy for 𝑣 ′′ = 30 is 

1070 𝑐𝑚−1). This result is unexpected because such long extrapolation is usually very unsafe. It 

indicates that the MLR potential may be a reliable model, which can achieve both experimental 

accuracy and good extrapolation accuracy, which is a very useful property when the experimental 

data does not reach the dissociation limit.  

The 𝐶6 coefficient itself cannot be determined as reliably as 𝐷𝑒 from limited datasets, but it 

would be unreasonable to expect sensible values for the long-range parameters Cn, when the 

outermost turning points of the experimental data are well below the Le Roy radius, where the 

potential significantly deviates from the pure long-range form so change in 𝐶𝑛 can be compensated 

by the short-range parameters 𝛽𝑖. The extrapolation properties of the MLR potentials may be 

further improved by using additional limitations of the possible values of 𝐶𝑛. This was also 

discussed in detail in the original MLR papers [12] and [8]. For example, the theoretical 

calculations in many cases set already quite tight uncertainty intervals around the calculated 

dispersion coefficients. In the present case of Ca2, allowing for a 5% uncertainty in the theoretical 

𝐶6 will automatically reduce the uncertainty in 𝐷𝑒 from ± 2 𝑐𝑚−1 to about ± 1 𝑐𝑚−1 for 𝑣"𝑚𝑎𝑥 =

30.  
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The uncertainty intervals for 𝐷𝑒 and 𝐶6 determined from Figure 5. 2 and Figure 5. 1 are 

derived under specific choice of limiting values of σ. We are not claiming that this is the ultimate 

uncertainty associated with these long-range parameters of the Ca2 ground state. Our aim is to 

show that within a large subset of MLR potential it is possible to have a consistent prediction for 

the dissociation energy of the electronic state. In combination with good theoretical value for 𝐶6 

the MLR form offers a reasonable long-range behavior of the electronic state even when the 

experimental data are well below the dissociation limit. For relatively full data sets, other potential 

models also can perform well, but none of them, to our best knowledge, has such good 

extrapolation properties. This conclusion comes from analyses of a single electronic state. To be 

more convincing, it should be supported with similar studies of various types of electronic states. 

For further improvement on the Ca2 ground state PEC, especially at long internuclear 

distances we believe that should be used only high-resolution Doppler free spectroscopic 

techniques.  
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Chapter 7 Contributions  

Scientific contributions: 

• For the first time the extrapolation properties of the Morse/Long Range potential have been 

investigated. It was shown that very reasonable values for De may be obtained even when 

the last 10-12 energy levels are missing. 

• The leading coefficient C6 cannot be fixed as reliably as De. At large extrapolations it is 

reasonable to use the theoretical values for C6. Even a 5% uncertainty in C6 may reduce 

significantly the uncertainty in De. 

• A methodology is suggested for assessment of the uncertainties of the fitted parameters, 

due to the model dependences. Contrary to the uncertainties due to the errors of the 

experimental data, a systematic study of the model dependences is missing (to our best 

knowledge). Of course, the presented studies and considerations should by no means be 

treated as final, apparently a lot still needs to be done. 

 

The author’s personal contributions may be summarized as follows: 

• Critical review of existing functional forms, suitable for modeling high resolution 

experimental data in diatomic molecules. Selection of functions with promising 

extrapolation at large internuclear distances – these are the Morse-Long-Range and the 

Chebishev-Polynomial-Expansion. Only the MLR form was studied extensively within the 

thesis. 

• Active participation in building of the methodology of the study. The procedure presented 

in the thesis is only the final stage of the performed investigations. Many ideas have been 

tested which consumed hundreds of hours of computing time. 

• Testing the newly written Fortran code IPA8 in the part dedicated to the MLR function. 

Derivation of the derivatives of the function with respect to the parameters. 

• All the work for preparation of the potentials before the automatized fitting: preparation of 

the initial potentials with the betafit program, fitting them with the IPA8 code. 

• Active participation in preparation of the simulations, collection of data, analysis of the 

results. 

 

Full length paper: 

1. A. Sinanaj and A. Pashov, Extrapolation properties of the Morse-Long Range potential at 

large internuclear Distances, J. Mol. Spectrosc. 396, 111811 (2023). 

2. A. Sinanaj and A. Pashov, Extrapolation properties of the Chebyshev- 

Polynomial-Expansion potential, Acta Physica Polonica A 146 (2024) in print 
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Conference papers: 

2.  A. Sinanaj and A. Pashov, Extrapolation Properties of the Morse/Long-Range Potential 

Proceedings of Science, vol. 427 - 11th International Conference of the Balkan Physical 

Union (BPU11) 2023. 

Participation in conferences with posters: 

1. 1-st International Scientific Conference in Mathematics and Physics, and their applications 

(1-st ISCMPA), 03 – 04 November 2022), Albania  

2. The 11th Conference of the Balkan Physical Union (BPU11Congress), from 28 August to 

1 September 2022.) Serbia, Poster presentation 

3. 28th colloquium on High resolution molecular spectroscopy, 28 Aug to 1 Sept, 2023 Dijon, 

France 
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