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Abstract

The hyperfine structure of the transitions in the (X, v′′ = 0→ (B, c), v′ = 2) band
system in 39K85Rb and 39K87Rb is studied by using several selective Doppler-free
spectroscopy techniques. Significant splitting of the line profiles is observable for
theB1Π state levels coupled to the c3Σ+ levels through spin-orbit interactions. The
splitting is the result from an interplay between spin-spin, spin-rotation, spin-orbit
interactions and the Fermi-contact interaction between the electron’s spin and the
nuclear spins. Energy shifts of the perturbed levels were analyzed and modeled
within the effective Hamiltonian approach. Molecular and coupling constants were
determined, which successfully model the experimental observations. Although the
highest experimental resolution of 50 MHz was not sufficient to resolve entirely the
hyperfine structure, the model successfully explains the line broadening in 39K85Rb
and the line splitting in 39K87Rb.
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Chapter 1

Introduction

Ever since the invention of the laser, molecular spectroscopy has gone through a
renaissance. The accuracy and resolving power of the measurements were greatly
increased and the different spectroscopic techniques that have been invented gave
opportunity of studying the molecular structures far more precisely than before.
Among other, the diatomic alkali-metal molecules have been, and still are, the
subject of many different experimental and theoretical investigations. They are
attractive for experimentalists because they are relatively easy to produce and
their rich optical spectrum can be covered with various types of available laser
sources. The homonuclear alkali diatomics (Li2, Na2, K2, Rb2 and Cs2) are among
the experimentally best studied diatomic molecules and they have often served as
testing ground for new spectroscopic techniques. On the other hand many different
kinds of theoretical calculations are devoted to the lighter alkali-metal diatomics
because of their relatively simple electronic structure - two valence electrons outside
closed shells.

Of all the different homo and heteronuclear alkali diatomic molecules the KRb
is of particular interest, because the atomic levels K(4p2Pj) are in close proxim-
ity to the atomic levels Rb(5p2Pj): the energies of the K(4p2P3/2), K(4p2P1/2),
Rb(5p2P3/2) and Rb(5p2P1/2) levels are, respectively, 13042.89, 12985.17, 12816.56
and 12578.96 cm−1[1]. Thus a strong coupling between the excited electronic states
correlated to these asymptotes is expected. Wang and Stwalley [2] predicted that
KRb has considerably stronger excited long-range interactions than any other het-
eronuclear alkali diatomic molecule and has very favorable Franck-Condon factors
for photoassociation [3, 4]. Another advantage of the KRb molecule is that, as a
heteronuclear molecule, it possesses permanent dipole moment giving the possibil-
ity of external filed control. Photoassociative production and trapping of ultracold
KRb molecules (not in their groundX1Σ+, v′′ = 0, J ′′ = 0 state) was demonstrated
[5, 6]. Ultracold Feshbach molecules and Feshbach resonances were also formed
and observed by magnetoassociation [7–9]. A lot of efforts have then been made for
production of ultracold molecules in their ground state and one way of achieving
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this is by Stimulated Raman adiabatic passage (STIRAP) [10]. Ni et al. [11] have
successfully transferred weakly bound magnetoassociated 40K87Rb molecules into
their ground state using STIRAP. Just two years after them this was also done
with photoassociated molecules as well [12, 13].

From experimental point of view, Walter and Barratt [14] are the first to show
the existence of heteronuclear alkali compound in vapor state by measuring their
absorption spectra. For KRb they observed a structureless band with a maximum
at 459.9 nm. Prior to any other spectroscopic studies, sensitized fluorescence in
rubidium vapor, induced by collision with excited potassium atoms was investi-
gated to determine the total cross sections for inelastic collisions between excited
potassium atoms and rubidium atoms in their ground states [15–18]. Beuc et al.
observed diffuse bands at 597, 586.7 and 569 nm [19] and additional satellite bands
were observed by Skenderović et al. [20].

The ground state X1Σ+ was first experimentally characterized at high reso-
lution by Ross et al. [21]. The KRb molecules were produced in heat pipe and
excited using a Ti:sapphire laser. The subsequent A(2)1Σ+ − X1Σ+ fluorescence
spectra was recorded on a Fourier transform spectrometer (see figure 2.1 with the
potential energy curves). With similar experimental setup, though at better reso-
lution, Amiot and Vergés [22] have substantially extended the experimental data
and altogether with the lines from [21], have derived a potential energy curve for
the ground state up to quite large internuclear distance of 10.419 Å. But the most
accurate, up to date, X1Σ+ state potential energy curve (up to 14.8 Å) is derived
by Pashov and co-workers [23], through a coupled channels fitting routine. They
have used the perturbations in the B(1)1Π state by the closely lying c(2)3Σ+ and
b(1)3Π triplet states as a window to record fluorescence with a Fourier-transform
spectrometer down to both X1Σ+ and a3Σ+ states. Thus they have extended
the experimental data from [22] even more and make use also of the Feshbach
resonance positions from [7]. From the fit the a3Σ+ state potential is derived as
well. In another study, again with Fourier-transform spectroscopy the spin-orbit
coupled A(2)1Σ+ and b(1)3Π states were studied and deperturbation analysis of
the data yield potential energy curves for both excited electronic states [24].

By using optical-optical double resonance polarization spectroscopy Okada et
al. [25] and Kasahara et al.[26] were the first to have studied the excited B(1)1Π
and 21Π electronic states. The 21Π state was studied also in [27], by recording
the fluorescence in the 31Π − 21Π system, after excitation with fixed Ar+ laser
frequencies. These reports have shown occurrence of many perturbations, some
of them used in [23] as already mentioned. The 31Σ+ state energy levels up to
v = 15 and those of the c(2)3Σ+ state up to v = 14 were also by recording the
fluorescence from the 31Π state [28, 29].

Lee et al. have prepared KRb molecules in their natural isotopic composition
in a pulsed molecular beam. Using resonance enhanced two photon ionization
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the group has observed and identified electric quadrupole and spin-forbidden tran-
sitions in the 11∆ − X1Σ+ and 33Σ+ − X1Σ+ band systems, respectively [30,
31]. In [31] the hyperfine structure of the 33Σ+ state was found to be mainly
dominated by the Fermi-contact interaction between the Rb nuclear spin and the
unpaired electronic spins. With the same experimental apparatus more band sys-
tems around 480 nm [32] and 420 nm [33] were recorded and even higher excited
13∆1, 4

1Σ+, 51Σ+ and 41Π, 71Σ, 51Π states were identified.
The establishment of cold KRb photoassociated molecules gave the opportunity

for investigating excited electronic states by starting from high vibrational X1Σ+

or a3Σ+ levels. The molecular wave function of such levels is non-zero mainly at
large internuclear distances, therefore having favorable Franck-Condon factors with
excited terms that are not accessible from the deeply bound X1Σ+ levels. In this
way photoassociation spectroscopy is somewhat complementary to the experiments
in heat pipe or molecular beam. With the high resolution spectra from photoas-
sociation spectroscopy the first few rotational terms for some high vibrational lev-
els of the excited electronic states correlated with the K(4s2S1/2)+Rb(5p2P1/2,3/2)
asymptotes were examined [6]. These spectra were recorded by tuning a continuous
wave laser that excites free-bound transitions, whereafter fluorescence to the a3Σ+

state a second strong pulsed laser ionizes the molecules by two photon excitation.
Similarly, but by fixing the frequency of the first laser and changing that of the sec-
ond one, inevitably resulting in lower resolving power, Kim et al. [34] studied the
band structure of the 23Π, 33Σ+ and 43Σ+ states. In another paper [35] the same
group have studied the band structure to the coupled B(1)1Π, c(2)3Σ+ and b(1)3Π
states using both ultracold molecules and molecular beam experiments. With such
an experimental combination they gave prescription for optimal stimulated Raman
transfer of ultacold molecules to their absolute ground state [36]. Also in searching
for optimal path, by using photoassociated molecules and depletion spectroscopy,
Aikawa et al. [37] have obtained high resolution rotational spectra for the first few
rotational terms of the 31Σ+(v′ = 41 − 50) state, thus increasing what was know
at that time from [28] for v ≤ 15. As in [34], Banerjee et al. [38] have also studied
the 33Σ+ state up to the last v′ = 13 level and observed broadening of the last
band line due to predissociation. Wang et al.[39] have determined the dissociation
energy of the ground state to be 4217.822(3) cm−1, using depletion spectroscopy.

From theoretical point of view, approximate ground state spectroscopic con-
stants for heteronuclear alkali molecules were obtained long ago by Cavaliére et al.
[40] by interpolation methods. The generalized reduced potential curve method
was set up by Jenc and Brandt [41, 42] and by Bludsky et al. [43], who derived
preliminary ground state potential curves for several guesses of the dissociation
energy value. An improved calculation of the dissociation energy for the X state
was given later by Stwalley [44]. Long range studies and calculation of dispersion
coefficients have been reported by several authors [45–49]. Ab initio calculation
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of the electronic states, calculation of permanent and transition dipole moments,
lifetimes and other molecular properties were reported in [50–62]. The most recent
ab initio calculations are given by Jasik et al. [63].

It was mentioned above, that in [23] the B(1)1Π− c(2)3Σ+ complex was used
to observe fluorescence to the a3Σ+ state, following excitation from X1Σ+. In this
study it was reported that the appearance of the hyperfine structure of the (B, c)
→ a3Σ+ transitions changes by tuning the laser across the X1Σ+→ (B, c) Doppler
profile. The only plausible explanation was the hyperfine structure of the (B, c)
levels. In [25] Okada et al. did not thoroughly analyze the fine structure of the
B state and the coupling with the c state, in order to come up with molecular
constants. Also, Kim et al. [34] in their study did not obtain rotational resolved
spectra for the (B, c) levels. And so far, the hyperfine structure was analyzed only
for the 33Σ+ state. The still missing understanding of the coupling between the B
and the c states and the hyperfine structure of their levels was the main motivation
to undertake the present study. To conduct the investigation the goals we set are:

1. Develop experimental setup, including lasers and schemes for Doppler free
spectroscopy.

2. Produce KRb molecules in a heat pipe and obtain optimum working condi-
tions for Doppler free measurements.

3. Record and analyse high resolution spectra. Assign quantum numbers to the
observed lines.

4. Develop theoretical model (including numerical routines) for the fine and the
hyperfine structure of the B − c (vB = 2) rotation levels.
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Chapter 2

The diatomic molecule effective
Hamiltonian

The purpose of chapters 3,4 and 5 in the thesis is to present in a systematic
manner the theoretical model, used afterwards with a numerical calculation to
give explanation of the experimentally obtained spectra. Here the main steps will
be outlined and only the important results will be given. General treatment on
the subject can also be found in [64–67].

The diatomic molecule is treated as a quantum-mechanical system composed
out of n+2 charged particles - n electrons and 2 nuclei. Models such as harmonic
or anharmonic oscillator, rigid or non-rigid rotor and symmetrical top are not able
to explain fine or hyperfine structure effects, thus not suitable to describe the
experimentally observed data in this study. Consider some laboratory frame of
reference, where ri = (xi, yi, zi) with i = 1, 2, . . . , n and Rα = (Xα, Yα, Zα) with
α = 1, 2 - designate the radius vectors of the electrons and the nuclei, respectively.
The Hamiltonian of the system, when no external field is present, is

H = −
2∑

α=1

ℏ2

2Mα

∇2
α −

n∑
i=1

ℏ2

2m
∇2

i +
Z1Z2e

2

4πϵ0

1

|R1 −R2|
+

e2

4πϵ0

n∑
i<j

1

|ri − rj|

− e2

4πϵ0

n,2∑
i,α=1

Zα

|ri −Rk|
+H(si) +H(Iα),

(2.1)

where ϵ0 is the vacuum permittivity constant, ℏ the reduced Plank’s constant, m is
the mass of the electron, M1,M2 and Z1, Z2 are the masses and the charges of the
nuclei; si is the i-th electron spin angular momentum operator, while Iα are those
for the nuclei. Nabla is the vector differential operator, whose form in Cartesian
coordinates is ∇ = (∂/∂x , ∂/∂y , ∂/∂z ). The first two sums represent the kinetic
energy operators of the particles. The third, forth and the fifth terms are the
electrostatic potential energies between the particles. Interaction terms due to the
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existence of the electron spin are included in H(si), whilst these that emerge from
consideration of the nuclear spin are included in H(Iα). Their explicit forms are
given in equations (4.47-4.50) of chapter 4 in the thesis. Analytical solution of the
stationary Schrödinger equation with this Hamiltonian is unthinkable, even more
a numerical method is impractical to apply at this stage. A sequence of trans-
formations, assumptions and simplification are made before reaching the point of
applying any numerical methods.

The overall idea is to separate the variables in (2.1) as much as possible and
then consider only that part of the Hamiltonian responsible not for the electronic,
nor for the vibrational but for the rotational structure, by means of the spherical
tensor algebra. To accomplish this a change of basis, going from the laboratory
frame to the center of mass of the nuclei (not of the molecule) is made initially.
Then another change is made to the so called molecular frame rotating with the
nuclei. The Hamiltonian thus obtained would allow separation of the variables,
where the motion of the electrons will depend only on the internuclear distance,
but not on the rotation of the nuclei. The end result, where the Hamiltonian is
separated into two parts is given by equations (3.49) and (3.88) in the thesis:

Hev = −
ℏ2

2µR2

∂

∂R
R2 ∂

∂R
− ℏ2

2m

n∑
i=1

∇2
ri
− ℏ2

2M

n∑
i,j=1

∇ri .∇rj

+ U(R, r1, . . . , rn), (2.2)

Hang = B(J − P )2 +H(si) +H(Iα). (2.3)

where the first part represents the electronic and vibrational motion, while the
second represents the angular motion, with B = ℏ2/2µR2. R here is the inter-
nuclear distance and the electronic coordinates are now written with respect to
the molecule-fixed frame, which rotates with the nuclei and whose axis is coin-
cident with the internuclear one. J is the total angular momentum exclusive of
nuclear spin and P = L+S is sum of the total electronic orbital and spin angular
momenta in the molecular frame.

There are in general two approaches, at this point: the effective Hamiltonian
or the coupled channels. Although the second one is more general and global,
we think that for the particular task the effective Hamiltonian approach is more
appropriate for two reasons: (1) the spin-orbit mixing is small compared to the
vibrational spacing of both B and c states (see figure 2.1 for the potential energy
curves), so it is expected that a small number of wave functions spanning the
subspace for the effective Hamiltonian method should be enough. (2) Treatment
of the hyperfine structure within a global coupled channels model will lead to
matrices of very large dimensions and would require significant computer power,
which is not justified for the present set of experimental observations.
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Figure 2.1: Theoretical adiabatic potential energy curves for selected KRb elec-
tronic states correlated to the lowest three dissociation limits, calculated in [63].
The upward arrow shows the transitions to the (B1Π, c3Σ+) complex excited by the
laser. In the filtered laser excitation experiment the fluorescence to the a3Σ+state
(c− a dashed arrow) is used.
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The idea of the effective Hamiltonian method is instead of solving a system
of coupled differential equations, to obtain a representation of the Hamiltonian in
a subspace of functions, which is able to take into account the block off-diagonal
matrix elements. This is very much alike the degenerate perturbation theory
normally studied in quantum mechanics courses. This effective Hamiltonian can
be obtained either by the Van Vleck contact transformation, or using projection
operators. More information can be found in chapter 4 of the thesis. The vibronic
part Hev serves as zero-order approximation, while the angular part Hang is treated
as perturbation, which lifts up the degeneracy of the eigenstates in zero-order.
The effective Hamiltonian in our case is restricted to act within a subspace of two
vibronic levels. For the B1Π state the initial basis is given by equations (5.12,
5.13, thesis), which correspond to the symmetrized Hund’s case (aβ-unequal) and
for the c3Σ+ state by equations (5.38, 5.39, 5.40, thesis) corresponding to Hund’s
case (bβJ -unequal). As a result of the application of this perturbative approach,
the operator form of the diatomic effective Hamiltonian is obtained (see equation
5.1, thesis)

Heff = H(0)
ev +H

(1)
rot,eff +H

(2)
rot,eff +Hss,eff +Hso,eff +Hsr,eff +HFC,eff

= Eη0,v0,S0 +B0(J −L− S)2 −D0[(J −L− S)2]2

+D1[⟨η0Λ|L+ |ηΛ− 1⟩ ⟨ηΛ− 1|L+ |η0Λ− 2⟩ (J− − S−)(J− − S−)

+ ⟨η0Λ|L+ |ηΛ− 1⟩2 (J−−S−)(J+−S+)+ ⟨η0Λ|L− |ηΛ + 1⟩2 (J+−S+)(J−−S−)

+ ⟨η0Λ|L− |ηΛ + 1⟩ ⟨ηΛ + 1|L− |η0Λ + 2⟩ (J+ − S+)(J+ − S+)]

+
2

3
λ
(
3S2

z − S2
)
+ AL · S + γR · S +

∑
α

bαFS · Iα. (2.4)

The derivation and the physical meaning of the different terms is discussed thor-
oughly in chapters 4 and 5 of the thesis. The matrix form of the effective Hamil-
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tonian is derived and given in section 5.3 of the thesis

. . . . . . 0 0

. . . HJ,J HJ,J+1 0

0 HJ+1,J HJ+1,J+1
. . .

0 0
. . . . . .



(2.5)

where HJ,J is a 5x5 block, which is the sum of the fine structure effective Hamilto-
nian matrix (5.75, thesis) for a given J and the diagonal block of the Fermi-contact
interaction matrix HJ,J

FC (5.90, thesis):



E ′
Π +B′

Π[J(J + 1)− 1]

+DΠ[J(J + 1)− 1]2
0 η

√
J+1
2J+1

η
√

J
2J+1

0

0

E ′
Π +B′

Π[J(J + 1)− 1]

+DΠ[J(J + 1)− 1]2

+qJ(J + 1)

0 0 η

η
√

J+1
2J+1

0

E ′
Σ +B′

ΣJ(J − 1)

+DΣ[J(J − 1)]2

−
(

J−1
2J+1

)
2
3
λ+ γ(J − 1)

1
2J
[F1(F1 + 1)

−J(J + 1)− I1(I1 + 1)]K1

√
J(J+1)

2J+1
2λ 0

η
√

J
2J+1

0

√
J(J+1)

2J+1
2λ

E ′
Σ +B′

Σ(J + 1)(J + 2)

+DΣ[(J + 1)(J + 2)]2

−
(

J+2
2J+1

)
2
3
λ− γ(J − 2)

− 1
2(J+1)

[F1(F1 + 1)

−J(J + 1)− I1(I1 + 1)]K1

0

0 η 0 0

E ′
Σ +B′

ΣJ(J + 1)

+DΣ[J(J + 1)]2

+2
3
λ− γ

1
2J(J+1)

[F1(F1 + 1)

−J(J + 1)− I1(I1 + 1)]K1


(2.6)

while the off-diagonal block HJ,J+1 is given only by the Fermi-contact interaction
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matrix HJ,J+1
FC (5.91, thesis):

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0

1
2(J+1)

[
J+2
2J+3

] 1
2 [(F1 + I1 + J + 2)

×(I1 + J + 1− F1)(F1 + J + 1− I1)

× (F1 + I1 − J)]
1
2 K1

0 0

1
2(J+1)

[
J

2J+1

] 1
2 [(F1 + I1 + J + 2)

×(I1 + J + 1− F1)(F1 + J + 1− I1)

× (F1 + I1 − J)]
1
2 K1

0 0



.

(2.7)
The total matrix is 5(2I1+1)×5(2I1+1) in size, with I1 the nuclear spin quan-

tum number of the nucleus that has dominant effect on the hyperfine structure.
The effect of the second nuclei is neglected. In the case for 85Rb with IRb = 5/2
the matrix is 30x30 in size, while for 87Rb, with I1 = 3/2 it is 20x20. There are
eleven molecular constants involved in the effective Hamiltonian thus obtained:
EΠ, BΠ, DΠ, EΣ, BΣ, DΣ, η, λ, γ, q and K1. EΠ and EΣ are the vibronic energies for
the B1Π and c3Σ+ electronic states, respectively. BΠ and BΣ are their rotational
constants, while DΠ and DΣ are the centrifugal distortion ones. η, λ and γ are the
fine structure spin-orbit, spin-spin and spin-rotation interactions respectively. q is
the Λ-doubling parameter and finally K1 is the Fermi-contact interaction constant.
Values of these molecular parameters are found thereafter by means of non-linear
numerical fit using the experimental data.
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Chapter 3

The Experiment

KRb molecules were produced in a stainless steel heat pipe in approximately 1:1
mass ratio of the ingredients in natural isotopic composition, which for potas-
sium is: 39K(93.3%), 40K(0.01%), 41K(6.7%); and for rubidium: 85Rb(72.2%),
87Rb(27.8%). 40K with its approximately 0.01% occurrence is of negligible impor-
tance for the experiments here. Most of the lines in the spectra1 (including in
this number the stronger ones) were due to 39K85Rb, 39K87Rb, 41K85Rb, 39K2 and
39K41K. Potassium and rubidium as alkali metals react vigorously with water and
oxygen. Using a heat pipe [68–70] is one way to create appropriate environment
for production of molecules in gaseous phase in order to investigate the internal
molecular structure. Another way to produce alkali molecules is by a molecular
beam [71–74]. Both methods come with their pros and cons and are somewhat
complementary. The temperature in the heat pipe is a few hundred degrees Cel-
sius and higher vibrational and rotational levels of the ground electronic state are
thermally populated, while the temperature in the molecular beam is far lower (∼
5-20 K) and only few rotational levels of the lowest vibrational state are populated.
The spectra from the molecular beam are therefore simpler and more susceptible
to interpretation while those from the heat pipe are much more complex. However
the abundance of thermally populated levels allows for the investigation of excited
states that cannot be reached in the molecular beam. Moreover the collisions that
occur in the heat pipe could be used as an advantage to populate adjacent levels
through collision transfer. This is particularly suitable for Laser induce fluores-
cence [23] and in some cases even for Optical-optical double resonance polarization
spectroscopy [25], by making the spectra much richer. In other situations it can be
a drawback when one does not want such population transfer to occur as is in our
case. The presence of collisions will also lead to broadening of the lines, which will

1Lines from 85Rb2 and its isotopologues were not observed, even though they are expected
to absorb in the spectral region covered by the experiments in this work. The reason for this
should be searched for in the mass ration of the ingredients, that turns out to determine the
concentration of the different diatomic molecules K2, KRb and R2.
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lower the resolving power. On the other hand, inside the beam collisions would
rarely occur, therefore neither collision transfer nor collision broadening would be
observed, but transition line broadening instead. By collimating the molecular
beam the first order Doppler broadening is greatly suppressed, while within the
heat pipe molecules are free to move in all directions. The Doppler broadening in
the latter case has to be overcome by means of saturation spectroscopy, polariza-
tion spectroscopy etc. The setup for molecular beam is generally more expensive
and involved to be build. It requires also to be continually loaded with ingredients.
Contrary, the heat pipe is cheaper and less intricate to build and sustain, and one
load will last for hundreds of hours of operation. In previous studies for NaK [75]
and NaRb [76] the molecular beam was used in order to investigate the hyperfine
structure of their c3Σ+ state. But based on what has just been said we have chosen
to start by using the heat pipe and we were able to accomplish our goals, though
probably somewhat better results could have been obtained by using a molecular
beam, however at much higher cost and experimental efforts.

3.1 The heat pipe

A sketch of the longitudinal cross section of the heat pipe can be seen in figure
3.1. Its way of work is by no mean obvious and easily quantified, for this is
a whole separate branch of investigation [77]. Our aim here is to make a brief
outline of the device used in this study. The core element is a stainless steel pipe
approximately 60 cm in length and 3 cm in diameter. Brass coolers supporting
transparent, anti-reflection coated mirrors are mounted on both ends of the pipe.
They are cooled by a constant water flow through channels inside them. A heater
surrounds the middle part of the pipe and is used along with thermocouple and a
PID (proportional-integral-differential) controller to stabilize the temperature at
a desired value. A fine stainless steel mesh grid (about 40 cm in length) is placed
on the inner surface of the pipe. The pipe is also connected through a valve to
a vacuum system composed manly of a rotational vacuum pump, pressure gauge
and an argon bottle.

The heat pipe operates as so: metals (∼5 g of Rb and ∼5 g of K) are placed
inside the pipe; the air is pumped out and the volume is filled with argon as a buffer
gas to low pressure (few Torr). The valve is closed, water cooling is turned on,
and the heater is set to stabilize the temperature at a preset value. While heating,
some of the material will evaporate thus forming free atoms and molecules. The
melting point of potassium is 63.5 ◦C and its boiling point is 758 ◦C, while for
rubidium they are 39.3 ◦C and 688 ◦C, respectively. But instead of expanding
throughout the whole volume, the molecules will condense on the mesh by getting
closer to the ends of the pipe, because of the lower temperature there, and because
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Figure 3.1: Basic longitudinal cross section sketch of the heat pipe.

of collisions with cold Ar atoms, which is the main purpose of the buffer gas; not to
let any molecules go near the windows. Here the mesh grid becomes so important,
because the material that condenses on it will be driven towards the center of the
pipe by capillary forces, along the increase of the temperature, and in this way
closing the working cycle. Depending on the working temperature, once the heat
pipe is loaded it can serve for many hundreds of hours. Once heated it can also
sustain working conditions for more than a dozen of hours. There are two major
physical quantities, namely pressure of the argon and the temperature, that can
be altered so as to obtain optimal results (spectra). With the setup just described
only initial argon pressure can be measured at room temperature, i.e. before the
heaters were turned on, and in our case for saturation spectroscopy it was chosen
to be 0.5 Torr, while the temperature was finally selected to 280 ◦C, but more on
that will be said later.

3.2 The Laser

As a light source a diode laser (HL6544FM, 50 mW from Thorlabs) with extended
cavity was used, working in one mode continuous-wave regime and producing beam
with a FWHM of less than 5 MHz. There are three major quantities we can control:
the laser temperature, its current and the grating inclination. The temperature was
stabilized at about 30.0 ◦C with a homemade temperature controller designed for
that purpose. It was not the precision of the absolute value, but rather its stability
in tame that was important in order to maintain stable output frequency. The
controller was able keep constant temperature within 200 µK for hours. Controlling
the frequency by changing the temperature is a rather slow operation, not so
convenient and precise as changing the current, when speaking of diode lasers.
Tunning of the frequency was done by a modulating the diode current with a

15



triangular signal (≈ 20 s period). The extension of the cavity was done by placing
additional diffraction grating [78]. Without such a supplement the FWHM of
the beam would be about 50 MHz, already above the natural linewidth (10-20
MHz). Yet another disadvantage, though the gain of the active media covers
a few nm, is that not all frequencies are accessible to be scanned continuously
because of mode hopping. The use of the dispersive element in the laser resonator
would narrow the FWHM of the output beam and would allow us to scan over
the wanted region, but in order to maintain continuous frequency scan it would
require synchronous rotation of the grating with the change of the diode current.
A piezoelement, driven by high voltage, made this possible so as to obtain mode
hop free ≈ 0.8 cm−1 scans. To change the frequency region either a course change
of the current or a tiny rotation of the diffraction grating, by a fine thread screw
supporting the construction, was done. In that way a range of the KRb B(v′ = 2)
- X(v′′ = 0) band, 15100− 15140 cm−1, was covered by overlapping scans.

3.3 Calibration of the spectra

For calibration of the spectrum, Doppler-limited absorption of the iodine dimer
in a glass cell was monitored, simultaneously with the recorded spectra, on an
oscilloscope, along with the fringes from a confocal interferometer (CFI) with a
free spectral range of 748 ± 1 MHz. The I2 spectrum should in principle be
enough for calibration, but normally there would be only a few absorption lines in
one scan and this is one reason why the CFI was needed. The laser frequency is
also not necessarily linearly scanned throughout the whole scan, due to the use of
piezoelement and this is the second reason. Because the fringes are equally spaced
in the frequency domain it will improve the accuracy of the calibration. Indeed,
one can think of the iodine cuvette as serving the purpose of absolute calibration,
while the CFI for relative one. The iodine dimmer is well studied and an atlas is
can be found in [79]. The precise technical way for calibration of the spectra is
done by means of a linear least-square fit, after finding the peaks of the I2 lines
and that of the CFI fringes. A wavemeter (WS5 model) with 0.1 cm−1 absolute
accuracy, was not suitable for calibration of the spectrum, because precision of
the order of 0.001 cm−1 was necessary. Nevertheless the instrument was helpful in
finding roughly the desired frequency region during setup.

3.4 Saturation spectroscopy

Initially Doppler-free saturation spectroscopy was employed. The experimental
setup is shown in figure 3.2. Before entering the heat pipe the beam, now at-
tenuated to about 10 mW, mainly because of imperfections in the mirrors, was
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Figure 3.2: Experimental setup for Saturation spectroscopy. CFI stands for Confo-
cal interferometer, FSR - free spectral range, PD - photodiode, BS - beam splitter.

split into two parts - pump and probe, with an intensity ratio of 9:1 respectively.
The two beams entered the heat pipe in opposite directions and were overlapped
in its center. The absorption of the probe was registered by a photodiode (PD,
BPW34). Thus an absorption spectrum with rather weak Lamb dips was observed.
To increase the sensitivity a few more things were added. First the intensity of the
pump beam was modulated by a mechanical chopper at 6 kHz and the absorption
of the probe was registered through a lock-in amplifier (Stanford Research System
SR830). But since the signal from the photodiode was of the order of volts, while
the useful signal was of the order of millivolts, this would not allow us to apply
great amplification before reaching saturation of the instrument. For that reason
the pump was once again split and the extracted beam, was used to monitor pure
absorption signal, so to serve as a reference. The difference between the probe and
the reference signals was send through an electronic band pass filter, whose output
then entered into the lock-in amplifier. By taking the difference of the signals any
in-phase noise would also be eliminated.

After obtaining signal as strong as possible, there are sill a couple of experi-
mental conditions which need optimization. Because our goal was to observe the
hyperfine splitting which, based on previous studies for NaK [75] and NaRb [76],
was expected to be of the order of tens or hundreds of MHz, we aimed towards
achieving maximum resolving power. There are four main categories to consider
concerning line broadening: natural, collision, power and Doppler broadening. (1)
Natural line broadening is caused by the interaction of the molecule with the
quantum vacuum leading to spontaneous emission and cannot be overcome. For
molecules it is typically 10-20 MHz in the visible spectral range and is what can
be achieved at best. (2) To minimize collision broadening one has to minimize the
frequency of collisions between the particles in the media and in the heat pipe,
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the temperature and the pressure of the argon are responsible for that. The fol-
lowing things were considered while searching for optimum values: concerning the
Ar pressure, value as low as possible is desired, because an increase would only
lead to more collisions. Since the purpose of the argon is to keep the molecules
away from the windows, we did not go below 0.5 Torr. If the temperature was
bellow 250 ◦C the molecular concentration would be low and the absorption would
be negligible, therefore hard to register; but if the temperature was higher than
330 ◦C almost a hundred percent absorption would be observed. With increase of
the temperature the collision frequency between Ar-KRb, K-KRb, Rb-KRb etc.
will increase and the lines would also become broader. A compromise value in this
range was then searched for, so as to minimize line broadening and still have strong
enough signals. That is how the above mentioned values (0.5 Torr and 280 ◦C)
were obtained 2. (3) To reduce the power broadening of the lines the intensities of
the pump and the probe were altered. It turned out that reducing the pump, the
probe, or both of them would not increase the resolving power. Because of that
we worked with the whole available power. (4) To reduce any residual Doppler
broadening the crossing angle between the pump and the probe was made as low
as possible (< 0.5◦). Finally we add one additional remark concerning transit-time
broadening. The beam width was about w = 2 mm and the mean velocity of the
molecules: v̄ =

√
8kT/πm ≈ 300 m/s. The transit-time FWHM [78] is then esti-

mated be δν ≈ v̄/w = 60 kHz, which is negligible in comparison with the natural
linewidth.

After optimization of the experimental conditions it was possible to reduce the
widths of the unperturbed lines down to about 50 MHz. In [80], where NaK had
been prepared in heat pipe (0.5 Torr, 550 K) the researchers reported the have
obtained 50 MHz FWHM. They employed Perturbation facilitated polarization
spectroscopy. In [81] for NaRb (1 Torr, 600 K of the heat pipe) the linewidths
are reported to be 75 MHz, using polarization spectroscopy. In comparison with
molecular beam the authors in [75] and [76] reported to have accomplished 20 MHz
resolving power. Part of our spectrum is shown in figure 3.3 (upper trace). The
saturated spectroscopy spectra were very complex to analyze due to the presence
of strong K2 and KRb B −X bands in multiple isotopologues. There were more
than fifty lines per 1 cm−1 on average. Nevertheless, it was possible to assign most

2In thermal equilibrium Boltzmann distribution is established, meaning that the probability of
an eigenstate with energy E to be populated is proportional to exp

{
− E

kT

}
. To estimate the extend

to which the terms are thermally populated we can use as a characteristic value, the energy, that
makes the power of the exponent equal to one. For T = 280 ◦C it is 384.5 cm−1. Using also the
ground state potential for 39K85Rb from [23] it can be calculated that: E(v′′ = 4, J ′′ = 0) = 336.6
cm−1, E(v′′ = 5, J ′′ = 0) = 410.1 cm−1, E(v′′ = 0, J ′′ = 95) = 382.0cm−1. Even without
considering degeneracy of the states or Frank-Condon factors, this information can give as a hint
about the manifold of possibility of transitions that can occur at such a temperature.
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Figure 3.3: Part of the spectrum form saturation spectroscopy (upper trace) and
filtered laser excitation spectroscopy (lower trace). Assignments of some transi-
tions are shown above the lines. Broadening due to the HFS is visible for example
for the perturbed (2 − 0)B − X Q(48) transition (compare with P (43) or even
Q(49)) and for the (v0 − 0)c−X RQ(48) transition.
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of the strong and non-overlapping transitions, for much of them have already been
observed and accurate molecular constants are available in [26, 82]3.

The hyperfine interactions result in broadening and sometimes in splitting of
observed spectral lines to the c3Σ+ state (see figure 3.4). In our case outside the
regions of perturbation the transitions to the B1Π were not broadened, but when
the coupling to the c state becomes strong - the transitions to the B state also show
broadening. Due to the dense spectra in saturation spectroscopy the lines with
visible HFS, frequently overlap with other lines and the effect of the HFS cannot
be fully resolved. Transitions to the c3Σ+ are also with relatively low intensity.
Because of that we were not able to identify some of the transitions, measure
some of the line widths or to tell to the positions of separate HFS components.
That is why Filtered Laser Excitation, Laser Induced Fluorescence and Optical-
optical Double Resonance Saturation spectroscopy were additionally used. These
techniques are described in chapter 7 in the thesis and helped to assign even more
transitions and to measure the broadening or splitting of the HFS.

3.5 Experimental results

In total 130 transitions related to 39K85Rb and 118 transitions related to 39K87Rb
were assigned in the saturated spectroscopy and OODRSS spectra. Most of them
are transitions to the B1Π state. Term energies of the excited states were obtained
by adding the transition frequencies to the ground state term values, which were
calculated using the potential energy curve from [23]. This potential is reported
to reproduce the experimental data with an estimated uncertainty better than
0.003 cm−1. This turns out to be the main source of uncertainty of the present
term values. The uncertainty of the transition frequencies from this study was
estimated by comparing 135 frequencies of selected B − X lines of K2, which
appear in the saturation spectroscopy spectra (e.g. R(104) in Figure 3.3) with their
values from [82]. The root-mean-square (rms) deviation was about 0.001 cm−1.
Therefore the combined uncertainty of the excited terms of the (B, c) complex can
be conservatively set to 0.003 cm−1. The full list of the experimental observations
may be found in the supplementary materials to [83].

For 39K85Rb 86 terms were obtained (with J ∈ [22, 61]), 6 of which belonged
to the c3Σ+ state. 75 terms of the B1Π were already observed in [25]. It was not
possible to observe fully resolved line splitting of the HFS for this isotopologue, but

3There is one side effect of saturation spectroscopy, namely the occurrence of additional lines
called crossovers. These are not real molecular transitions and occur just in the middle of two
closely spaced (within the Doppler width) lines. This fact, among others, initially made us to
consider employing double-resonance technique in addition to saturation spectroscopy. But by
inspecting carefully the spectra no such crossovers were found, puzzling enough.
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Figure 3.4: On the upper row, 39K85Rb line shapes for B1Π(v′ = 2, J ′)−X1Σ(v′′ =
0, J ′′) transitions showing broadening due to the interplay between spin-orbit and
Fermi-contact interaction. On the lower row, line shapes for some of the 39K87Rb
lines, showing partially resolved splitting. All of the spectra are from OODRSS,
except for Q(40) and Q(42) for 39K87Rb (marked with *) which are from saturation
spectroscopy.

only line broadening (figure 3.4, upper row). Linewidths (FWHM) were measured
for 11 lines showing such a broadening. For 39K87Rb, 82 terms were obtained
(again with J ∈ [22, 61]), 4 belonging to the c3Σ+ state. Splitting of 6 lines into
4 HFS components were identified in the spectra (figure 3.4, lower row). The
position of each HFS component was used later in the fit when the nuclear spin
effect was taken into account. For the initial fit where only fine structure effects
were taken into account, only the central frequency of the HFS was used.
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Chapter 4

Results and discussion

A summary of the theoretical model was presented in chapter 2, where the end
result was some square matrix that depends on a number of molecular parameters,
while the experimental techniques and the data available from them were explained
and given in chapter 3. In this chapter the final results from the non-linear least
square fit are presented and discussed. More information about the numerical
method that is applied and all the details involved can be found in chapter 9 of
the thesis.

4.1 The 39K87Rb isotopologue

For the 39K87Rb isotopologue the best fit parameters are given in table 4.1. They
reproduce the experimental data with a standard deviation of 0.0014 cm−1, which is
already below the estimated experimental uncertainty 0.003 cm−1. We recall from
section 3.5, that the uncertainties of the B and c experimental term values was
determined, based on the rms for the transitions in our experimental spectra (about
0.001 cm−1) and the estimated uncertainties of the ground state terms (about
0.003 cm−1) from [23]. Apparently the KRb ground state PEC from [23] predicts
the term energies more accurately. In figure 4.1 the calculated HFS components
relative to their central HFS positions are plotted as a function of J for the B1Πf

state. The experimental data are indicated by an ‘X’ mark. In figure 4.2 residuals
of the term energies are plotted as a function of J . One can see that they are not
randomly scattered around the zero line and that there is a cubic-like dependence.
Throughout the study we have limited ourselves to the second-order approximation
in the effective Hamiltonian method. Normally higher order centrifugal terms will
become important for higher J values. But even though it was tried to include the
third order term H[J(J+1)−Ω2]3 in the model, this cubic-like tendency could not
be removed. This is also a reason to find second-order approximation satisfactory
enough in our case. The tail for higher J numbers can be explained by the next
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B1Π(v = 2) c3Σ(v0)

E 15163.8863(16) 15187.19(36)

B 0.0323594(18) 0.01760(40)

D 3.799(41)× 10−8 −0.75(11)× 10−6

q 1.36(32)× 10−6

λ 0.4620(48)

γ 0.00386(20)

η 0.4845(10)

K1 0.0205(12)

Table 4.1: Molecular constants and interaction coefficients of the B1Π(v = 2) and
c3Σ+(v0) states in

39K87Rb. All values are in units of cm−1.

center of perturbation around J ′ = 70, which was also partially observed in the
spectra, but was not included in the present fit. The correlation matrix of the
parameters is given in table 4.2. Along with the uncertainties of the parameters,
it is calculated in a standard way, well described in chapter 15.6 of reference [84].
There is a large correlation between the EΠ, BΠ and DΠ molecular parameters, but
if we try to exclude DΠ for example, the quality of the final fit will highly degrade
and the residuals for higher J values will increase way beyond the experimental
uncertainties. The situation with the c3Σ+ state is not quite the same, because
there are fewer experimental term energies available. But by keeping DΣ the fit is
somewhat better.

4.2 The 39K85Rb isotopologue

For 39K85Rb, where IK = 3/2 and IRb = 5/2, depending on whether the dominant
nuclei would be the potassium or the rubidium one, four or six HFS components
had to be expected, respectively. Unfortunately only broadening of the lines was
observed for 39K85Rb and the number of the HFS components was not resolved.
Later on we will argue that the interaction with the potassium nuclei is very
weak and that the Fermi-contact interaction with the rubidium one dominates
the broadening of the lines. When taking the Rb nucleus with IRb = 5/2 the
corresponding matrix to be diagonalized is 30 × 30 in size. For completeness we
performed also a fit when the main Fermi-contact interaction was assumed to be
with the K nucleus (IK = 3/2 and a 20× 20 matrix). The raw experimental data
for this isotopologue, consist of 11 line widths and 86 term energies. Since only the
experimental line widths broadened by the Fermi-contact interaction are available,
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EΠ BΠ DΠ EΣ BΣ DΣ η λ γ K1 q

EΠ 1.00 −0.93 −0.87 −0.16 0.16 0.16 0.17 −0.16 0.08 −0.04 −0.04
BΠ −0.93 1.00 0.97 0.05 −0.05 −0.05 −0.15 0.07 0.02 −0.01 −0.05
DΠ −0.87 0.97 1.00 0.05 −0.06 −0.06 −0.11 0.06 0.04 −0.02 0.04

EΣ −0.16 0.05 0.05 1.00 −1.00 −0.98 0.02 0.78 −0.39 0.17 0.09

BΣ 0.16 −0.05 −0.06 −1.00 1.00 1.00 −0.01 −0.78 0.31 −0.16 −0.08
DΣ 0.16 −0.05 −0.06 −0.98 1.00 1.00 0.00 −0.76 0.22 −0.14 −0.08
η 0.17 −0.15 −0.11 0.02 −0.01 0.00 1.00 −0.14 −0.16 −0.10 0.04

λ −0.16 0.07 0.06 0.78 −0.78 −0.76 −0.14 1.00 −0.30 0.08 −0.03
γ 0.08 0.02 0.04 −0.39 0.31 0.22 −0.16 −0.30 1.00 −0.21 −0.09
K1 −0.04 −0.01 −0.02 0.17 −0.16 −0.14 −0.10 0.08 −0.21 1.00 0.06

q −0.04 −0.05 0.04 0.09 −0.08 −0.08 0.04 −0.03 −0.09 0.06 1.00


Table 4.2: Correlation matrix for the molecular parameter of 39K87Rb.
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Figure 4.1: Observed and calculated hyperfine splitting of the B1Π state f levels
for 39K87Rb relative to the central position of the corresponding HFS.
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Figure 4.2: Residuals of the term energies for 39K87Rb as a function of the rota-
tional quantum number (J).

they are compared with a calculated ones. The latter were obtained by adding the
apparatus function to each calculated HFS eigenvalue. The apparatus function
was defined by a cubic spline fitted to the shape of an unperturbed B1Π line. In
this way we assume that the broadening due to the second nuclei does not exceed
the apparatus function.

The best fitted parameters from the non-linear fit of the 39K85Rb isotopologue
are give in Table 4.3. We have performed the fit first with the Rb nucleus, consid-
ered to have dominant effect and then with the K one. The molecular parameters
describing the fine structure in both cases are virtually the same. Only the hyper-
fine constant K1 is different: 0.00560(12) cm−1 for Rb and 0.00907(20) cm−1 for
K. For both assumptions the rms deviation for the line positions is 0.0022 cm−1

and for the line widths: 0.0006 cm−1 (≈ 20 MHz). In Figure 4.3 observed and
calculated FWHM of the B1Πf levels are plotted against J for the case where the
HFS is modeled with the Rb nucleus. In figure 4.4 residuals of the term energies
are plotted as a function of J . Compared with the 39K87Rb case (figure 4.2), the
same cubic-like pattern is observed but slightly more dispersed in the perturba-
tion region. The tendency is explained again by the next center of perturbation
around J ′ = 70. The correlation matrix of the parameters is given in table 4.4.
The situation is similar as with 39K87Rb.
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B1Π(v = 2) c3Σ(v0)

E 15164.4343(15) 15193.86(35)

B 0.0325917(18) 0.01678(35)

D 3.790(42)× 10−8 −0.994(75)× 10−6

q 1.20(33)× 10−6

λ −0.2407(34)
γ 0.00971(8)

η 0.4707(12)

K1 0.00560(12)[Rb]

0.00907(20)[K]

Table 4.3: Molecular constants and interaction coefficients of the B1Π(v = 2) and
c3Σ+(v0) states in

39K85Rb. All values are in units of cm−1.



EΠ BΠ DΠ EΣ BΣ DΣ η λ γ K1 q

EΠ 1.00 −0.93 −0.87 −0.09 0.09 0.09 0.09 −0.09 0.07 0.03 0.01

BΠ −0.93 1.00 0.97 0.03 −0.03 −0.02 −0.02 0.08 −0.07 −0.03 −0.11
DΠ −0.87 0.97 1.00 0.05 −0.05 −0.05 0.04 0.09 −0.04 −0.03 −0.01
EΣ −0.09 0.03 0.05 1.00 −1.00 −1.00 0.05 0.54 0.12 −0.12 0.11

BΣ 0.09 −0.03 −0.05 −1.00 1.00 1.00 −0.06 −0.55 −0.15 0.12 −0.11
DΣ 0.09 −0.02 −0.05 −1.00 1.00 1.00 −0.08 −0.56 −0.18 0.13 −0.11
η 0.09 −0.02 0.04 0.05 −0.06 −0.08 1.00 0.00 0.30 0.02 0.02

λ −0.09 0.08 0.09 0.54 −0.55 −0.56 0.00 1.00 −0.07 −0.19 −0.06
γ 0.07 −0.07 −0.04 0.12 −0.15 −0.18 0.30 −0.07 1.00 −0.11 0.06

K1 0.03 −0.03 −0.03 −0.12 0.12 0.13 0.02 −0.19 −0.11 1.00 0.01

q 0.01 −0.11 −0.01 0.11 −0.11 −0.11 0.02 −0.06 0.06 0.01 1.00


Table 4.4: Correlation matrix for the molecular parameter of 39K85Rb.
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2) states are plotted against J for 39K85Rb.
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Figure 4.4: Residuals of the term energies for 39K85Rb as a function of the rota-
tional quantum number (J).

4.3 Discussion

Fine structure parameters

To describe the rotational and the fine structure of the (B−c) complex, ten molecu-
lar parameters (withoutK1) were included in the model: EΠ, BΠ, DΠ, EΣ, BΣ, DΣ, η, λ, γ
and q. The EΠ used in the fit is actually the primed constant in equation (5.73,
thesis) but for the B1Π state

E ′
Π = EΠ +BΠ

〈
L2
⊥
〉
Π
+DΠ

〈
L2
⊥
〉2
Π
. (4.1)

Therefore the fitted parameter is a sum of the electronic and vibrational energies
of (B1Π, vB = 2) plus two small corrections, arising due to non-zero electronic
orbital angular momentum perpendicular to the internuclear axis. For of the same
reason, the rotational constant BΠ is also corrected. It is given by

B′
Π = BΠ + 2DΠ

〈
L2
⊥
〉
Π
, (4.2)

similarly to the primed constant in equation (5.74, thesis). DΠ is the centrifugal
distortion constant of the same state. The same considerations apply for EΣ, BΣ

and DΣ of the c state. The molecular constants for both isotopologues were deter-
mined independently. We decided that this is the proper approach at this stage
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with limited number of experimental observations. Nevertheless, it is possible
to check whether the relationships between the rotational and centrifugal distor-
tion constants can be scaled with the ratio of the reduced masses ρ =

√
µ1/µ2:

B2/B1 = ρ2 and D2/D1 = ρ4, where the subscripts 1 and 2 refer to 39K85Rb
and 39K87Rb, respectively. In the case of the study ρ ≈ 0.996378 [85]. For the
B1Π state, B2/B1 = 0.992871(78) and ρ2 = 0.992771, which gives a 1.3σ differ-
ence. The ratio of the centrifugal distortion constants is D2/D1 = 1.002(15) and
ρ4 = 0.986, which is a 1.1σ difference. So for the B state these relationships can
be considered fulfilled. For the c3Σ+ state however, the ratio of the rotational
constants is B2/B1 = 1.049(30), which is 1.9σ away from the expected value of ρ2.
The fitted centrifugal distortion constants are with opposite, negative signs, most
probably due to the smaller number of experimental data available for the c3Σ+

state. They therefore deviate from their original physical meaning and serve only
as effective parameters in the fit.

The effect of the Lambda doubling on the B1Π state is described by the term
qJ(J + 1). The parameter q is given by equation (5.54, thesis) and takes into
account the balanced second order rotational interactions of B1Π with A1Σ+ and
C1Σ+. The value for the fitted parameter q is very small (see tables 4.1 and 4.3).
In fact the splitting between the e and f components was discovered only at the
end of the study, when the residuals of the fits were plotted. Such small splitting
is observed in the analogous B1Π states in the mix alkalies, e.g. NaK [75] and
NaRb [76].

The spin-orbit, spin-spin and spin-rotation coupling constants - η, λ and γ, as
discussed in section 4.7.2 in the thesis, all incorporate first and second order effects

η = η(1) + η(2), (4.3)

λ = λ(1) + λ(2), (4.4)

γ = γ(1) + γ(2), (4.5)

where the first order contributions are given by equations (5.64, 4.104, 4.106,
thesis). The value for the spin-rotation constant γ may be compared with the value
from [29], although the analysis there covers only the first 14 vibrational levels of
the c3Σ+ state. Recently the same experimental data were reanalyzed within a
new coupled channels model [62], where ab initio calculations provided the missing
R-dependent matrix elements. In table III from ref. [29] for v′c = 0 γ = 0.00166(4)
cm−1 with a pronounced decrease with vc. It is unsafe to extrapolate this value to
vc = 37 − 40 which is the most probable perturber of the vB = 2 in the B state.
In [62] the pure spin-rotation γ is 3.3× 10−4 cm−1, however one should add to it
the second order corrections which are a factor of 2-3 times larger. Nevertheless,
these values are significantly smaller than those from our analysis: γ = 0.00970(7)
cm−1 for 39K85Rb and γ = 0.00386(20) cm−1 for 39K87Rb.
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In [29] an estimate for the spin-spin interaction is given, ϵ = −0.469(2) cm−1

(Amiot used a different notation for this parameter). The order of magnitude is
the same as for λ from table 4.3. For 39K87Rb the sign is opposite and we found
out that this was crucial for the present experimental observations.

The first order part of the spin-orbit interaction is the average value of the off-
diagonal spin-orbit function, ⟨vB|ξBc(R)|vc⟩. In reference [62] a theoretical function
for ξBc(R) is published and it can be used to estimate the value of η(1). In the
same paper the authors report a refined ab initio c3Σ+ potential by using the low
vc experimental data from [29]. In ref. [61] adiabatic potential for the B1Π state
can be found based on the experimental data from [35]. Ab initio calculations on
the B1Π and c3Σ+ state PECs are reported also in [53, 63]. The estimates for η(1)

based on these three pairs of potentials are 3.7 cm−1(PECs from [61, 62]), 0.32
cm−1 ([63] PECs) and -0.12 cm−1 ([53] PECs). The B state potential from [61]
should be considered as the most accurate so far, however the c state [62] has a
very steep repulsive branch and this results in an overestimated overlap with the
vB = 2 level in B1Π state. The values of the η(1) from the ab initio potentials seem
more consistent and the deviations come mainly due to different positions of the
B − c crossing.

All of the above mentioned discrepancies indicate that the second order contri-
butions in the fine structure parameters are also important. The fitted molecular
parameters reproduce the experimentally observed term energies within the un-
certainties, but in order to say more about their physical significance either more
experimental data is needed, or a more general coupled channels model, which
includes the B1Π, c3Σ+and possibly C1Σ+ states, has to be considered.

Hyperfine structure parameters

We will start the discussion with the 39K87Rb isotopologue, because of the partially
resolved hyperfine structure. The nuclear spins are IK = 3/2 and IRb = 3/2,
therefore whichever nuclei is considered to have dominant effect, it is expected to
produce splitting of a line to the c3Σ+ state into four main HFS components, as
observed in the experiment (figure 4.5). That the observed splitting is mainly due
to the interaction with the rubidium nuclei, follows from the fact that the HFS
splitting changes significantly when changing the Rb isotope (see figure 3.4). The
effect of the second nucleus apparently is very small and leads only to broadening
of the hyperfine components within the resolution of the present experiment. It is
a situation similar to the HFS of the c3Σ+ in NaK [75], where the Fermi-contact
interaction with the sodium nuclei dominates and the interaction with K leads
only to additional broadening of the main hyperfine components. For our case,
in figure 4.5 one can compare the line widths of the hyperfine components of the
(v′ = 2, J ′ = 40, F1) c

3Σ+ level (170±30 MHz) with an unperturbed transitions to
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Figure 4.5: Recorded spectrum with OODRSS. The pump laser was fixed on the
X(v′′ = 0)−B(v′ = 2), P(40) transition of 39K87Rb, so as to label the v′′ = 0, J ′′ =
40 ground state.

the B1Π state (about 90 MHz). This extra broadening allows us to estimate the
splitting of the hyperfine components due to the second nucleus. The calculation
is done in somewhat similar way as with the linewidths for 39K85Rb. There we
had six lines, each covered with an apparatus function to produce the overall line
shape, while now we have four lines. The four lines for J = 40 and N = J−1 = 39
in figure 4.5 have F1 = 38.5, 39.5, 40.5, 41.5 quantum number. If the experimental
resolution was greater each line would have been further decomposed into four
components with different F2 values, e.g. the one with F1 = 41.5 will have F2 =
40, 41, 42, 43. The relative position of these F2 components can be calculated by
using the diagonal matrix element of the Fermi-contact interaction of the second
nuclei given in equation (5.92, thesis) for the N = J−1 state, because in first-order
approximation the diagonal elements of a perturbation will give the shifts. Then
given the relative positions and the apparatus function, the width of the overall
line is calculated. This is done for a range of input K2 values and a scatter plot
of the linewidth as a function of K2 is obtained. From there it is deduced that to
have width of 170± 30 MHz, K2 should be equal to 0.0012± 0.0003cm−1.

To determine whether one of nuclei has dominant effect in the hyperfine split-
ting for the 39K85Rb isotopologue and to say which one is it, an additional connec-
tion between the atomic and molecular constants of the Fermi-contact interaction,
will be used. Such connection can be established through the use of molecular or-
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bitals. In diatomic alkali molecules only the two outermost electrons are involved
in the bound. The other electrons form closed shells around the two nuclei and do
not contribute to the total electronic spin. It is not our purpose here to show how
these molecular wave function are constructed out of the atomic ones by linear
combinations [65, 86]. The molecular orbital for the c3Σ+ state are

|0⟩ |11⟩ = 1√
2

[
|σs(1)⟩ |σp0(2)⟩ − |σp0(1)⟩ |σs(2)⟩

]
|α(1)⟩ |α(2)⟩ , (4.6)

|0⟩ |1− 1⟩ = 1√
2

[
|σs(1)⟩ |σp0(2)⟩ − |σp0(1)⟩ |σs(2)⟩

]
|β(1)⟩ |β(2)⟩ , (4.7)

|0⟩ |10⟩ = 1

2

[
|σs(1)⟩ |σp0(2)⟩ − |σp0(1)⟩ |σs(2)⟩

][
|α(1)⟩ |β(2)⟩+ |β(1)⟩ |α(2)⟩

]
,

(4.8)

with |Λ⟩ |SΣ⟩ used as notation and where |α⟩ (ms = 1/2) and |β⟩ (ms = −1/2)
are the one electron spin wave functions in the molecule-fixed frame of reference.
|σs⟩ = a

∣∣4sK〉 + b
∣∣5sRb

〉
and |σp0⟩ = c

∣∣4pK0 〉 + d
∣∣5pRb

0

〉
are the spatial parts of

the molecular orbitals, expressed as linear combinations of the atomic ones, again
with respect to the molecular frame. They are also restricted by the normalization
conditions

a2 + 2abS1 + b2 = 1, S1 =
〈
4sK|5sRb

〉
, (4.9)

c2 + 2cdS2 + d2 = 1, S2 =
〈
4pK0 |5pRb

0

〉
, (4.10)

with S1 and S2, the overlap integrals.
To calculate K1 defined by equation (5.83, thesis), the reduced matrix element

of the operator has to be found. On one side, through the use of the Wigner-Eckard
theorem applied to one of the matrix elements we have

⟨0| ⟨10| ζ1
∑
i

s
(1)
q,i δ(R1 − ri) |0⟩ |11⟩

= (−1)q+1−0

(
1 1 1
0 q 1

)√
2.1 + 1(01||ζ1

∑
i

s
(1)
i δ(R1 − ri)||01)

=
1√
2
(01||ζ1

∑
i

s
(1)
i δ(R1 − ri)||01) = K1, (4.11)

where the only non-zero term is for q = −1, because of the 3-j symbol. On the other
side we can calculate the matrix element itself, through the use of the molecular
orbitals given in (4.6,4.8). If we take Rb as the first nucleus and K as the second
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one, the end result will be

⟨0| ⟨10|
∑
i

s
(1)
q,i δ(R1 − ri) |0⟩ |11⟩ =

1

2

[
b2
〈
5sRb |δ(R1)| 5sRb

〉
+ 2ab

〈
5sRb

∣∣ δ(R1)
∣∣4sK〉+ a2

〈
4sK

∣∣ δ(R1)
∣∣4sK〉+ c2

〈
4pK0

∣∣ δ(R1)
∣∣4pK0 〉]

−
(
ac

〈
4sK

∣∣ δ(R1)
∣∣4pK0 〉+ bc

〈
5sRb

∣∣ δ(R1)
∣∣4pK0 〉)(bc 〈4pK0 |5sRb

〉
+ ad

〈
5pRb

0 |4sK
〉)

≈ 1

2
b2
〈
5sRb |δ(R1)| 5sRb

〉
, (4.12)

where only the dominant term was left and the others were neglected. Therefore
we obtain

K1 ≈
1

2
b2ζ1

〈
5sRb |δ(R1)| 5sRb

〉
. (4.13)

The atomic hyperfine structure constant for the Fermi-contact interaction of the
5s 2S1/2 state is defined as

ARb = ζ1
〈
5sRb |δ(R1)| 5sRb

〉
. (4.14)

Hence the connection between the molecular and the atomic constants is in the
form

K1,Rb ≈
1

2
b2ARb. (4.15)

In a similar way, for the K nucleus it is derived that

K2,K ≈
1

2
a2AK, (4.16)

where
AK = ζ2

〈
4sK |δ(R2)| 4sK

〉
. (4.17)

In table 4.5 we present a collection of atomic constants A [87] and experimen-
tally determined values for K1 and K2 describing the HFS structure of c3Σ+ in
NaK [75], Na85Rb [76] and KRb (this study). The values of the coefficients a
and b are calculated form (4.15) and (4.16) by substitution of the atomic and the
molecular constants. Both of these coefficients must be in the range [0,1] according
to the normalization condition. They determine the contribution of the relevant
atomic orbital in the constructed molecular one.

For the c3Σ+ states of NaK and NaRb the contribution of the |32S,Na⟩ is
dominant, a = 0.84 and a = 0.65 respectively. In KRb the contribution of both
atomic orbitals seems to be comparable. One may speculate that in NaK and
NaRb, the c3Σ+ state correlates to an asymptote with Na atom in the ground 32S
state, and therefore the contribution of this state to the MO is dominant. In KRb,
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A [cm−1] Mol. HFS const. [cm−1] a b Asymptote

NaK[75] 0.0295 0.0077 0.0105 0.0006 0.84 0.39 (32S)Na+(42P )K

NaK[88] 0.0295 0.0077 0.0103(2) ≤0.0003 0.83 0.28 (32S)Na+(42P )K

Na85Rb[76] 0.0295 0.0338 0.0065 0.00013 0.65 0.28 (32S)Na+(52P )85Rb

K85Rb 0.0077 0.0338 0.0012(3) 0.00560(12) 0.56 0.58 (42S)K+(52P )85Rb

K87Rb 0.0077 0.1140 0.0012(3) 0.0205(12) 0.56 0.60 (42S)K+(52P )87Rb

Table 4.5: Atomic [87] and molecular constants for the c3Σ+ state in NaK [75,
88], Na85Rb [76], K85Rb and K87Rb (this study). The sequence of the constants
corresponds to the order of the atoms in the molecule.

asymptotically the K atom is in the ground state 42S, however the next asymptote
42P + 52S is very close (see figure 2.1) and this may be the reason for the strong
mixing of the Rb 52S state. We believe that the modern ab initio calculations on
the molecular structure can provide reliable estimations of the molecular hyperfine
constants, which can be compared with the experimental results from Table 4.5.

We return back to the point which nucleus has dominant effect on the hyper-
fine structure by the Fermi-contact interaction. While it is clearer for the 39K87Rb
isotopologue that the 87Rb nucleus produces the splitting and the K one is re-
sponsible for the broadening of each hyperfine components, it is not as evident
for the 39K85Rb isotopologue. However, it can be argued that most probably the
85Rb nucleus plays the major role again, for the following reasons: (1) Equations
(4.15,4.16) which connect atomic and molecular constants, also set an upper limit
for the molecular constant, if we assume in the worst case a or b to be equal to
one; i.e. the molecular constant cannot exceed half the atomic one. The deriva-
tion of these relations was based upon the use of molecular orbitals, which are only
approximations to the real ones, so this restriction is not an absolute upper limit.
However, with AK = 0.0077 cm−1 and K1,K = 0.00907 cm−1 (see Table 4.3) it fol-
lows that a = 1.53, making it very unlikely that the K nucleus dominates. (2) The
ratio between the atomic constants of the Rb isotopes, A87Rb(5

2S)/A85Rb(5
2S) =

0.1140/0.0337 ≈ 3.38 is very close to ratio between the molecular HFS constants
from this study K87Rb(c

3Σ+)/K85Rb(c
3Σ+) = 0.0205/0.0056 ≈ 3.66(22) (where

K87Rb(c
3Σ+) stands for K1 of K87Rb and similarly for K85Rb). The fitted K85Rb

constant can be scaled from the K87Rb constant by the ratio of the atomic ones,
so the assumptions that Rb nuclei is dominant in both isotopologues lead to the
same value of b, which is expected since the electronic wave function should be
nearly invariant with respect to interchange of the Rb isotopes. (3) Because the
electronic wave function should be nearly invariant with respect to interchange of
the Rb isotopes, we also have to expect that K2,K would be nearly the same for
both isotopologues. However, the valueK2,K = 0.0012 cm−1 estimated for 39K87Rb
is a couple of times smaller than the fitted one K2,K = 0.00907 cm−1 for 39K85Rb.
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Chapter 5

Summary and Conclusions

In this thesis the results of spectroscopic studies of the KRb molecule are presented.
The focus is on a particular perturbation (v′B = 2) between the B1Π and the c3Σ+

electronic states. Rotational terms belonging to the two different states interact
because of strong spin-orbit coupling. Other fine structure interactions such as the
spin-spin and spin-rotation turned out to play significant role and were necessary
to be considered. Furthermore in the perturbation region some transitions to the
B1Π state have shown line broadening for the 39K85Rb and some - splitting for
the 39K87Rb isotopologues. This effect is attributed to the interplay between the
spin-orbit and Fermi contact interactions, therefore the hyperfine structure effects
are considered as well.

An experimental setup is developed and four spectroscopic techniques are em-
ployed in this investigation. Two of them: Filtered laser excitation and Laser
induced fluorescence spectroscopy are used as supplementary, to assign some of
the transitions. The main body of data is coming from the high resolution satu-
ration spectroscopy and from the highly selective optical-optical double resonance
saturation spectroscopy. The KRb molecules are produced in a heat pipe and
optimal working conditions are obtained for the high resolution Doppler free mea-
surements. In total, 130 transitions and 11 FWHM of lines that show broadening
related to 39K85Rb were measured and assigned. For 39K87Rb, 118 transitions were
assigned, six of which are split into four HFS components.

The effective Hamiltonian method is used as theoretical model. It takes into ac-
count both fine and hyperfine structure effects, and is able of explaining the exper-
imental data within their uncertainties. The model incorporates eleven molecular
parameters, values of which are obtained after a non-linear Levenberg-Marquartd
numerical fit. Same analysis, but separately, is conducted both for 39K85Rb and
39K87Rb isotopologues. While the experiment is more definitive about the source
of hyperfine splitting in 39K87Rb, i.e. from the Fermi contact interaction with the
87Rb nucleus, such is not the case with the main isotopologue 39K85Rb. However,
the analysis has shown that most probably, again the 85Rb nucleus has dominant
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role. The final results of this study for the molecular constants are presented along
with their calculated uncertainties. The physical meaning of the obtained values
is also discussed.

One future perspective is to investigate the hyperfine structure of the lowest
lying triplet a3Σ+ state. This could be done via optical-optical double resonance
saturation spectroscopy in Λ-type configuration, where the B1Π-c3Σ+ mixing is
used as an intermediate step. Another possibility is to extend furthermore the
experimental data to higher v′ in the B state and perform more global Coupled-
channel deperturbation analysis of the excited electronic states.
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Chapter 6

List of author’s publications

The main results discussed in this thesis were published in the following papers:

1. V. Stoyanov and A. Pashov. “Investigation on the fine and hyperfine struc-
ture of the c3Σ+ state in KRb”. JQSRT 316, 108908 (2024).

2. V. Stoyanov and A. Pashov. “Investigation on the fine structure of the
B1Π−c3Σ+ complex in KRb”. Journal of Physics: Conference Series 2710,
012036 (2024).
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