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“Nothing takes place in the universe in which some rule of maximum or minimum does
not appear. ”

Leonhard Euler (1707-1783)

Introduction

Optimal control theory is a mathematical discipline that focuses on finding a con-
trol law for a dynamical system over time to optimize a certain objective, typically
expressed as a cost function. It has applications across various fields, including
economics, engineering, environmental sciences, and management. Key concepts
in optimal control theory include state variables and control variables, cost functions,
differential equations, and optimization.

The roots of optimal control theory can be traced back to the calculus of varia-
tions, a field of mathematics dating back to Newton and Leibniz in the 17th cen-
tury. It deals with finding the extrema (maximum or minimum values) of func-
tionals, which are mappings from a set of functions to the real numbers. Func-
tionals are often expressed as integrals involving functions and their derivatives.
It is often considered to have its origins in 1696 with the work of Johann Bernoulli
and the Brachistochrone problem. Johann Bernoulli posed the Brachistochrone
problem in 1696, which is considered one of the earliest problems in the calculus
of variations, it was posed in the journal "Acta Eruditorum," which was one of
the first scientific journals of the time. The problem involves finding the curve of
quickest descent, which is, the path along which a particle will move under the
force of gravity from one point to another in the shortest time. This problem at-
tracted the attention of some of the most prominent mathematicians of the time,
including Leibniz, Newton, and Bernoulli’s own brother, Jakob Bernoulli. The so-
lution to the Brachistochrone problem was a significant moment in the history of
mathematics, as it was one of the first times a mathematical solution was found
for a problem of optimizing a quantity - in this case, time. It laid the groundwork
for the development of the calculus of variations as a formal mathematical disci-
pline. A problem formulated in terms of calculus of variation, can be written as
follows: Given a functional

J[x] =
∫ b

a
L(x(t), ẋ(t), t) dt
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where x(t) is a function that maps from [a, b] ⊂ R to R, and ẋ(t) is the deriva-
tive of x with respect to t. The task is to find the function x(t) that extremizes
(minimizes or maximizes) the functional J[x].

Over the next century, the calculus of variations grew as a field of study, with
contributions from mathematicians like Euler and Lagrange. Euler’s significant
contribution in the calculus of variations was the development of the Euler - La-
grange equation, a fundamental equation to find the function that minimizes or
maximizes a functional. The equation is expressed as:

∂L
∂x
− d

dt

(
∂L
∂ẋ

)
= 0,

where L is the Lagrangian. Euler laid the foundation for the variational principles,
demonstrating how extremal values of functionals are found by solving differen-
tial equations.

Lagrange developed Lagrangian mechanics, a reformulation of classical me-
chanics, introduced in his work “Mécanique Analytique” (1788). Lagrange intro-
duced the concept of generalized coordinates and formulated the principle of least
action. This principle states that the path taken by a physical system between two
states is the one for which the action is minimized.

Throughout the 18th and 19th centuries, the focus was largely on developing
mathematical techniques for optimizing functionals, setting the stage for the for-
mal establishment of optimal control theory in the 20th century, which extends
this framework to include functionals of functions that are subject to dynamic
constraints, thus broadening the scope of problems that can be addressed in an
optimization context.

Given controlled dynamics, the following is an optimal control problem for-
mulation:

Maximize: J[u(t)] =
∫ t f

t0

L(x(t), u(t), t) dt

Subject to:


ẋ(t) = f (x(t), u(t), t) (System Dynamics)
u(t) ∈ U (Control Constraints)
x(t0) = x0 (Initial Condition)
x(t f ) = x f (Final State Condition, optional)

(P)

where x(t) represents the state of the system at time t, u(t) represents the con-
trol input at time t, U is the closed set of all admissible controls, f (x, u, t) is the
function defining the system’s dynamics, and L(x, u, t) is the cost function. The
goal is to find the control function u∗(t) that minimizes J[u] over the interval
[t0, t f ], adhering to the specified dynamics and constraints.

The Pontryagin Maximum Principle, developed by Russian mathematician
Lev Pontryagin in the late 1950s, is a significant advancement in the field of con-
trol theory (cf. Pontryagin et al., 1962). It is a cornerstone of optimal control theory
that provides necessary conditions for an optimal control process.

The Principle provides a method to find the best control strategy for a given
system. It does this by introducing an auxiliary function called the Hamiltonian,
which combines the system’s dynamics with the objective we want to optimize.
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The principle informally says that for a control strategy to be optimal, it must, at
each instant in time, adjust the control variable such that the Hamiltonian is maxi-
mized (or minimized). This is like saying, "At every moment, choose your control
action in such a way that it gives you the best immediate advantage, considering
both your current state and your goal."

Formally the principle states:
Consider the optimal control problem (P). The Pontryagin Maximum Principle

states that if u∗(t) is an optimal control function on the interval [t0, t f ], with corre-
sponding optimal trajectory x∗(t), there exists a non-trivial, absolutely continuous
function ψ(t), called the adjoint variable or costate, such that:

The adjoint variable ψ(t) satisfies the adjoint equation:

ψ̇(t) = −∂H
∂x

(x∗(t), u∗(t), ψ(t), t),

whereH is the Hamiltonian defined as:

H(x, u, ψ, t) = ψ · f (x, u, t) + L(x, u, t)

For almost every t, the Hamiltonian H is maximized (or minimized for minimiza-
tion problems) with respect to u along the optimal trajectory:

H(x∗(t), u∗(t), ψ(t), t) = max
u∈U
H(x∗(t), u, ψ(t), t),

where U is the set of all admissible controls.
At the same time, Richard Bellman, an american mathematician, developed

the method of dynamic programming, a recursive optimization strategy that
breaks down multi-period planning problems into simpler steps at different points
in time (cf. Bellman, 1957). The Principle of Optimality, formulated by Bellman, is
a foundational concept in dynamic programming and optimal control theory, pro-
viding a critical framework for solving optimization problems where decisions
need to be made sequentially over time. Mathematically, the Bellman Principle of
Optimality can be expressed as follows:

For a dynamic system with a state x(t) at time t and a control strategy u(t)
over a time horizon [t0, T], the value function V∗(x(t), t) is defined as:

V∗(x(t), t) = min
u(τ)

{∫ T

t
g(x(τ), u(τ), τ)dτ + h(x(T))

}
,

where g is the running cost function, h is the terminal cost function, and τ ranges
from t to T. The principle states that if u∗(t) is an optimal control strategy from
t0 to T, then for any intermediate time t1, u∗(t) from t1 to T must also be optimal
for the system starting in state x(t1). This implies that the decision at any time
t depends only on the state at that time and not on the prior path taken to reach
that state.

In other words it states that an optimal policy or strategy has the property that,
regardless of the initial state and initial decision, the remaining decisions must
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constitute an optimal policy with regard to the state resulting from the first deci-
sion. In simpler terms, it means that if you have found an optimal path (or strat-
egy) from some initial state to a goal state, then every subpath (or sub-strategy) of
this path, starting from any point along the path, must also be optimal.

This principle allows the decomposition of a complex dynamic optimization
problem into smaller, simpler subproblems, which can be solved independently,
and the solutions can be combined to solve the original problem. It is particularly
powerful in the context of discrete-time systems, where it leads to a recursive al-
gorithmic structure, often referred to as "dynamic programming".

Natural processes, engineering, manufacturing, economics, healthcare, infor-
mation systems, and social and behavioral processes all face inherent uncertain-
ties. Environmental conditions like weather patterns, geological events, and eco-
logical dynamics are rife with variability, posing challenges for prediction and
control. Engineering and manufacturing design and optimization are complicated
by material properties, production processes, and market demand. Economic and
financial systems are inherently uncertain, driven by market fluctuations, geopo-
litical events, and unforeseen crises. Healthcare faces uncertainties in biological
systems, treatment effectiveness, and disease spread, while information systems
and technology face uncertainties from network congestion, software bugs, and
cybersecurity threats. Social and behavioral processes, such as human decision-
making and interactions, are also influenced by uncertainties from individual
preferences, societal dynamics, and unforeseen events. Political, cultural, and
economic shifts contribute to the complex and unpredictable nature of social sys-
tems. This introduction aims to illuminate the omnipresence of uncertainty and
its multifaceted relationship with various real-world processes, suggesting that
uncertainty is a fundamental aspect of many real-world phenomena and plays a
complex role in shaping and influencing various processes.

The traditional optimal control paradigm, which focuses on optimizing sys-
tem behavior, faces new challenges in developing strategies resilient to unfore-
seen disturbances or imprecise knowledge. This leads to a specialized branch of
optimal control theory that considers uncertain environments. Including a dis-
turbance term in the objective function adds complexity to finite and infinite time
horizon optimal control problems, as disturbances represent external factors that
affect system behavior and cost.

The significance of addressing uncertainty is highlighted by the number of
mathematical concepts developed to manage it. While this research doesn’t ex-
plore these concepts, notable examples include:

Probability Theory plays a pivotal role in modeling and analyzing uncertain-
ties, essential in optimal control and decision-making. The foundational works
of notable mathematicians such asMoivre, 1718, Gauss, Laplace, 1812, and Kol-
mogorov, 1956 have been instrumental in shaping this field.

Stochastic processes, which model dynamic systems with random fluctuations,
have been extensively studied by mathematicians like Doob, 1953 and Taylor and
Karlin, 1975. Stochastic processes model systems whose behavior evolves over
time under random influences. They are characterized by variables that change
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stochastically, often described by stochastic differential equations. Stochastic pro-
cesses are used to represent dynamic systems affected by noise or other random
factors, allowing for the study of their long-term behavior and the impact of un-
certainties on system performance.

Stochastic Differential Equations (SDEs) are differential equations in which
one or more of the terms is a stochastic process, often representing noise or other
random influences. SDEs are used to model the dynamics of systems affected by
random fluctuations, providing a means to analyze and predict the behavior of
such systems under uncertainty, as explored by Øksendal, 2003.

Statistics, a key tool for analyzing uncertain data, finds its roots in the contri-
butions of statisticians such as Fisher, 1925 and Neyman, 1934. Ronald A. Fisher,
made contributions to the development of statistical methods, including the intro-
duction of maximum likelihood estimation (MLE). While Fisher’s work laid the
foundation for likelihood-based inference, including hypothesis testing through
methods like the likelihood ratio test, the likelihood ratio test was further de-
veloped by statisticians like Jerzy Neyman and Egon Pearson. Neyman’s work,
particularly the Neyman-Pearson lemma, laid the groundwork for systematic hy-
pothesis testing.

Fuzzy Logic, introduced by Zadeh, 1965 extends classical logic by introduc-
ing degrees of truth. It’s used in situations where information is ambiguous, im-
precise, or lacking in certainty. Fuzzy logic enables the handling of uncertainty
by allowing for intermediate values between ’completely true’ and ’completely
false’, thus providing a more nuanced approach to decision-making and control
in uncertain environments.

Information theory, pioneered by Shannon, 1948, introduces measures like en-
tropy to quantify uncertainty in communication systems and data analysis. Shan-
non’s main result is the formulation of entropy as a measure of uncertainty or in-
formation content in a probabilistic system. Shannon’s entropy measures the av-
erage amount of surprise or uncertainty associated with the possible outcomes of
a random variable. It quantifies the information content in a probability distribu-
tion, with higher entropy indicating higher uncertainty. If all outcomes are equally
likely, the entropy is maximized, representing maximum uncertainty. Conversely,
if one outcome is certain (probability 1) and others impossible (probability 0), the
entropy is minimized, representing no uncertainty.

Monte Carlo Methods are computational algorithms used for simulating ran-
dom processes. Monte Carlo methods are applied in optimal control to estimate
the behavior of complex systems under uncertainty by running simulations with
random inputs. This approach is particularly useful for assessing the impact of
uncertainty and for systems that are analytically intractable. Nicholas Metropolis
and Stanislaw Ulam are pioneers in this field.

Robust optimization, seeking solutions resilient to uncertainty, draws inspira-
tion from Ben-Tal and Nemirovski, 2009 seminal work and Bertsimas and Sim,
2004 contributions. Robust Optimization approach involves formulating opti-
mization problems that remain effective under various scenarios of uncertainty.
It typically focuses on designing solutions that can withstand worst-case scenar-
ios or a range of uncertain parameters. Robust optimization is crucial in ensuring
that the solutions to control problems are not overly sensitive to assumptions or
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unknown variables.

Designing and implementing robust controls for such systems has the advan-
tage of ensuring acceptable outcomes in a range of circumstances, while decisions
entirely based on expected utility would generally lead to inferior performance
if the realization of the uncertain quantities deviates significantly from the ex-
pectation. Furthermore, sometimes it is not feasible to assign probabilities to the
various scenarios (Knightian uncertainty) which renders the expected utility ap-
proach inapplicable. An alternative is to seek to minimize the loss associated with
the worst outcome if a certain decision rule is applied, which naturally leads to
min-max decision criteria. Robust control methods have found broad applica-
tions in engineering, including aerospace (see, for example, Chen and Hu, 2007,
and Durham and Lawrence, 2007), electrical (Zhou and Doyle, 1997, and Wilam-
owski and Irwin, 2011) and industrial (Antsaklis and Michel, 2006, Doyle, Fran-
cis, and Tannenbaum, 2009, and Petersen and Savkin, 2003), but also in various
economic problems, notably in monetary theory and policy. Examples include
Rozenov, 2016, Onatski and Williams, 2003, Giannoni, 2007 and J. Dennis and
Soderstrom, 2009, among others. In economic applications, Hansen and Sargent,
2008 approach to robustness is motivated by the fact that often decision makers
work with models that are only approximations of the true model that generates
the data. Faced with the problem of misspecification, the decision maker seeks a
rule that will perform well across all models that satisfy a relative entropy con-
straint. This entropy constraint is usually converted into a penalty term in the
objective function to capture the preference for robustness. A related interpre-
tation is that of a game against a hypothetical malevolent agent (nature) which
chooses the disturbances such as to maximize the loss that the policymaker is try-
ing to minimize.

The game theory is fundamental to this setting because it offers a framework
for assessing situations in which numerous agents are involved in decision-
making, each player’s result is dependent on the decisions made by others, and
one agent’s actions affect or influence others. Dynamic games, have been widely
used to model strategic interactions when the players have different goals. While
historically they have been largely associated with pursuit-evasion games, recent
applications focus more on attenuation of disturbances in controlled uncertain
systems. The theory has been shaped by the works of Neumann and Morgenstern,
1944 and Nash, 1950. Central to the analysis of these games is the concept of equi-
librium, where players’ strategies reach a state of equilibrium, and no player has
an incentive to unilaterally deviate from their chosen strategy. In the context of the
infinite time horizon, various notions of equilibrium, such as perfect Nash equi-
librium, Stackelberg equilibrium, weakly overtaking equilibrium, among others
play a crucial role in characterizing stable and sustainable strategies that persist
over time.

Different approaches to obtaining robust controls have been developed in the
literature, both in the frequency and time domains. In the time domain, the min-
max formulation provides a natural association with a two-player non-cooperative
zero-sum game (Başar and Bernhard, 1991). In this setup, one of the players aims
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to minimize the loss, whereas the other player (nature) aims to maximize it. Thus,
the solution to the min-max optimal control problem, when it exists, represents
the saddle point equilibrium of the game, which is also the Nash equilibrium.

Dynamic games can take place in continuous or discrete time and can be de-
fined on finite or infinite time horizon (Başar and Olsder, 1999). Among them,
linear quadratic unconstrained games are perhaps the most studied class (Engw-
erda, 2005). In many practical circumstances, however, the assumption that the
players’ actions are unconstrained is not appropriate. .

Chapter 1 applies the dynamic game perspective to the problem of robust-
ness. In particular, it considers two-person non-cooperative linear-quadratic (LQ)
games in continuous time on an infinite-time horizon. This approach is in line
with the framework proposed by Başar and Bernhard, 1991, which utilizes game
theory to formalize the worst-case design problem. While LQ games have been
well-studied in the literature (e.g., Başar and Olsder, 1999; E. Dockner and Sorger,
2012; Engwerda, 2005), the infinite-time horizon case is usually presented in a
context where no constraints are imposed on the control variables. This draw-
back is particularly significant in real-world scenarios where control actions are
inherently bound by certain limitations. An example of such a constraint is the
zero lower bound on nominal interest rates. The chapter aims to bridge this gap
by exploring scenarios where control variables are subject to realistic constraints,
thereby providing a more comprehensive understanding of LQ games in infinite-
time horizons.

The chapter’s primary contribution lies in establishing a sufficient condition
for a saddle point, which also corresponds to the Nash equilibrium, in an infinite-
time horizon LQ game, especially under constraints on the control actions of the
minimizing player. We demonstrate the existence of a compact neighborhood
around the origin within the state space, where these constraints are not active.
The existence of such a neighborhood, as detailed in Goebel and Subbotin, 2007,
is previously established for a specific linear-quadratic optimal control problem.
Utilizing this neighborhood, we transform the infinite-time horizon optimal con-
trol problem faced by the minimizing agent into a finite-time horizon problem,
which is then solvable using standard methods. Although our results are framed
within the context of saddle points (Nash equilibria), they are equally applicable
to Stackelberg game formulations, which are often more suitable for certain eco-
nomic models. This applicability stems from the alignment of stationary feedback
Nash and Stackelberg equilibria in games characterized by orthogonal reaction
functions, as outlined in Rubio, 2006.1

Definition 0.1 (Stackelberg equilibrium, Chen and Cruz, 1972). Given a two-person
game, where Player 1 wants to minimize a cost function J1(u1, u2) and Player 2 wants to
minimize a cost function J2(u1, u2) by choosing u1, u2 from admissible strategy sets U1
and U2, respectively, then the control pair (u∗1 , u∗2) is called a Stackelberg equilibrium
with Player 2 as leader and Player 1 as follower if for any u2 belonging to U2 and u1

1Differential games with orthogonal instantaneous reaction functions are characterized by the
independence of the first derivatives of the cost functions and dynamic equations with respect to
each player’s controls from the controls of the other player (see Rubio, 2006, Definition 2.4).
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belonging to U1
J2(u∗1 , u∗2) ≤ J2(u′1(u2), u2),

where
J1(u′1(u2), u2) = min

u1
J1(u1, u2)

and
u∗1 = u′1(u

∗
2).

In Section ?? of Chapter 1, we illustrate the proposed approach using a sim-
ple New Keynesian monetary policy model, formulated in continuous time. This
model serves as a practical example to demonstrate the application and effective-
ness of our theoretical findings in a real-world economic context.

In Chapter 2, the focus is on discrete-time linear-quadratic games over an in-
finite horizon, again with a special emphasis on scenarios where constraints are
applied to the actions of the agent seeking minimization.Although sharing sim-
ilarities with its continuous-time counterpart, discussed in the previous chapter,
the discrete-time case presents unique challenges that warrant distinct analysis.
The adoption of discrete-time systems becomes particularly pertinent when the
nature of the problem under scrutiny is inherently discrete, aligning with the dis-
crete nature of the control actions involved. Central to our approach is Bellman’s
principle of optimality, which we demonstrate to be applicable across a broad
spectrum of min-max control problems.

The contributions of this chapter include a min-max theorem for the uncon-
strained linear-quadratic problem and an exploration of the asymptotic behavior
of system trajectories under control. One of our main findings is the establish-
ment of an equivalence between the infinite-horizon problem and a correspond-
ing finite-horizon problem. We show that, in cases where the system is stabiliz-
able, there exists a neighborhood near the origin where control constraints become
non-binding. Consequently, once the state enters this neighborhood, the solution
for the constrained problem aligns with that of the unconstrained problem, effec-
tively reducing it to a finite-dimensional issue solvable through numerical meth-
ods. The main contribution in Chapter 2 presents sufficient optimality conditions
for the linear-quadratic discrete-time game.

While some of the results obtained in the chapter are known, the presented
proofs are novel. The practical application of our approach is illustrated through
a model detailing the short-period dynamics of an F-16 aircraft.

Chapter 3 delves into the complexity of deriving optimality conditions of Pon-
tryagin’s maximum principle type (as initially developed in Boltyanskij, 1978).
The optimization problem under consideration falls within the class of min-max
type problems, where the objective is to minimize the maximum adverse impact
of disturbances.

Several authors have significantly contributed to this field. For instance, Fu-
denberg and Tirole, 1991 present a range of results in game theory, focusing on
equilibria in discrete-time games. Their approach, grounded in dynamic pro-
gramming and backward induction, is used for formulating and solving these
game problems. Osborne and Rubinstein, 1994 delve into Nash equilibria in
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discrete-time games, employing best response dynamics and mathematical tools
like fixed-point theorems to understand strategic behavior in a variety of game-
theoretic settings.

A pivotal outcome of the investigation in this chapter is the establishment of
a necessary optimality condition, structured along the lines of Pontryagin’s max-
imum principle. The derivation leverages a crucial result from a recent study by
Aseev, Krastanov, and Veliov, 2017, denoted as Theorem 2.2, which provides a
local maximum condition for the Hamiltonian function.

Additionally Chapter 3 focuses on a specific subset of discrete-time games
within dynamical games, specifically optimal control problems without distur-
bances, highlighting that optimal control problems are a partial manifestation
within the broader dynamical game canvas.

The central result of this section, Theorem 3.17, provides under suitable as-
sumptions a novel sufficient optimality condition. The proof relies on a well-
established relationship between the objective function of the optimal control prob-
lem and the corresponding Hamiltonian function, as explained in Proposition
3.16. This crucial interrelation was deduced utilizing a definition in Aseev, Kras-
tanov, and Veliov, 2017, where as previously explain the adjoint variable – critical
for the maximum condition for the Hamiltonian in Pontryagin’s Principle – is ex-
plicitly defined for each given optimal process.
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Chapter 1

Continuous-Time Linear-Quadratic
Game

“In everything, there is a share of everything ”

Anaxagoras (c.500 - c.428 BC)

1.1 Formulation of the Problem

Let us consider a specific scenario where a real number t0 ≥ 0 and an initial
state vector x0 ∈ Rn are fixed. In this setting, we study a class of continuous
non-cooperative linear-quadratic differential games. The dynamics of the game is
governed by the following linear differential equation:

ẋ(t) = Ax(t) + Buu(t) + Bvv(t), x(t0) = x0, (1.1)

where A, Bu, and Bv represent matrices with dimensions n× n, n×mu, and n×mv
respectively. The vectors x(t), where t ∈ [t0,+∞), and x0 signify the system state
at time t, and the initial state at time t0, respectively.

The players, referred to as the first and second players, determine their actions
(or controls) via the functions u and v, respectively. Both controls can either be
open-loop or closed-loop.

An open-loop control u for the first player is a measurable function u : [t0,+∞)
→ U ⊂ Rmu with

∫ ∞
t0
‖u(t)‖2 dt < ∞. The set U represents a closed and convex

neighborhood of the origin in Rmu . The set of all open-loop controls for the first
player is denoted by UU. In the unbounded case (U = Rmu), this set is denoted
by U . A closed-loop control u : Rn → Rmu is a function u(x), where, if linear,
u(x) = Kux, and Ku is an mu × n matrix.
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It is assumed that the second player, representing disturbances, faces no con-
trol constraints. An open-loop control v for the second player is a measurable
function v : [t0,+∞) → Rmv with

∫ ∞
t0
‖v(t)‖2 dt < ∞. The set of all such controls

is denoted by V . A closed-loop control v : Rn → Rmv is a function v(x), where, if
linear, v(x) = Kvx, and Kv is an mv × n matrix.

Given the dynamics (1.1), we consider the following infinite-time horizon linear-
quadratic game:

inf
u∈UU

sup
v∈V

J(x0, t0, u, v), (1.2)

where the objective function is defined as

J(x0, t0, u, v) :=
∫ ∞

t0

(
xᵀu,v(t)Qxu,v(t) + uᵀ(t)Ruu(t)− vᵀ(t)Rvv(t)

)
dt.

In this formulation, Q is a symmetric, positive semi-definite matrix of dimension
n × n, while Ru and Rv are symmetric, positive definite matrices with dimen-
sions mu × mu and mv × mv, respectively. The objective of the first player is to
minimize the objective function J(x0, t0, u, v), whereas the second player aims to
maximize it. The notation xu,v(·) represents the trajectory corresponding to the
control functions u(·) and v(·). The value function VU : Rn × [t0, ∞) → R of the
game is defined as:

VU(x0, t0) := inf
u∈UU

sup
v∈V

J(x0, t0, u, v).

A control pair (u, v) is considered feasible, if, additionally, the objective func-
tion J, as described in (1.2), yields a finite value under it. We set

V(x0, t0) := VRmu (x0, t0).

Below, we state several propositions that establish some properties of the dif-
ferential game (1.2) and provide a method for finding its solution.

The following assumption will apply to the remainder of this chapter. It sets
the stage for analyzing and solving the differential game by ensuring that the
system described by the linear-quadratic framework is stable and behaves in a
predictable and controllable manner.

StandingAssumption : (*)

• The matrix algebraic Riccati equation (1.3), provided below

Q + XBvR−1
v Bᵀ

v X− XBuR−1
u Bᵀ

uX + AᵀX + XA = 0 (1.3)

with respect to the n× n matrix X, possesses a symmetric positive definite solution,
denoted further by P;

• All eigenvalues of the matrices

A, [A− BuR−1
u Bᵀ

uP], [A + BvR−1
v Bᵀ

v P], and [A− BuKu + BvKv]
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exhibit negative real parts, where

Ku := R−1
u Bᵀ

uP and Kv := R−1
v Bᵀ

v P.

Regarding the information pattern, we assume that both players possess com-
plete knowledge of all parameters governing the dynamics, including the matri-
ces A, Bu, and Bv, as well as those defining the objective function, such as the
matrices Q, Ru, and Rv. Additionally, we assume that throughout the entire du-
ration of the game, both players have access to the current state of the system,
denoted as x(t) for t ∈ [t0, ∞). A similar model is considered in Engwerda, 2005.

1.2 Approximation of the Constrained Game

To address the constrained scenario, the strategy involves demonstrating a corre-
lation between the infinite-horizon issue and a corresponding finite-horizon prob-
lem. This approach proves beneficial, particularly when the system is stabilizable.
In such cases, it’s demonstrated that there exists a neighborhood around the ori-
gin in the state space where the control limitations cease to be restrictive. When
the state reaches this area, the outcome of the constrained problem aligns with
the solution of the unconstrained issue. Consequently, this reduces the problem
to a finite-time constrained one, which can be effectively resolved using compu-
tational techniques.

The assertion below provides a fundamental property of the system (1.1), it
establishes that, for an arbitrary control pair

(u, v) ∈ L2([t0, ∞), Rmu)× L2([t0, ∞), Rmv),

the state trajectory converges to the origin as time approaches infinity. Here,
L2([t0, ∞), Rm) is defined as the set {w : [t0, ∞) → Rm :

∫ ∞
t0
|w(t)|2dt < ∞},

which forms a Banach space with the norm ‖w‖L2 =
( ∫ ∞

t0
|w(t)|2dt

)1/2.

Proposition 1.1 (Vanishing State Trajectory). Let the Standing Assumption (*) hold
true, let

u ∈ L2([t0, ∞), Rmu) and v ∈ L2([t0, ∞), Rmv)

are arbitrary measurable functions and let xu,v be the corresponding state trajectory.
Then,

lim
t→+∞

xu,v(t) = 0.

1.2.1 Solution to the Unconstrained Game

Initially, let’s examine the scenario where the first player’s controls are unre-
stricted. Under suitable technical assumptions, the subsequent proposition pro-
vides, feedback controls that act as a Nash equilibrium for the differential game
(1.2), i.e., it ensures optimality in the absence of unilateral improvements in an



Chapter 1. Continuous-Time Linear-Quadratic Game 4

infinite-time horizon setting. "Optimality in the absence of unilateral improve-
ments" refers to a situation in a game where a strategy profile (a combination of
strategies chosen by each player) is considered optimal if no single player can
unilaterally deviate from their current strategy to achieve a better outcome for
themselves. In other words, the strategy profile is deemed optimal if, given the
strategies chosen by all other players, no individual player can improve their own
payoff by independently changing their strategy. The Nash equilibrium is crucial
to the system’s ability to resist changes or deviations by individual players.

Proposition 1.2 (Solution to the Unconstrained Game). Let the Standing Assump-
tion (*) hold true and let us define the feedback controls

ū(x) := −Kux ∈ Rmu , v̄(x) := Kvx ∈ Rmv , x ∈ Rn. (1.4)

Then,
J(x0, t0, ū, v) ≤ V(x0, t0) = J(x0, t0, ū, v̄) ≤ J(x0, t0, u, v̄) (1.5)

for each u ∈ U and each v ∈ V , i.e., (ū, v̄) is a saddle point (Nash equilibrium) for the
differential game (1.2) in the unconstrained case when U = Rmu and

J(x0, t0, ū, v̄) = xᵀ0 Px0.

1.2.2 Constraint-Free δ-Neighborhood

Continuing with our analysis, let us now explore the scenario where constraints
are imposed on the control function of the minimizing player. For the subsequent
developments, we introduce specific notations. By B̄n we denote the closed unit
ball centered at the origin (here B̄n ⊂ Rn) and by x̄ū,v̄(·, y, τ) the trajectory in-
duced by (1.1), corresponding to the controls ū and v̄ and starting from the point
y at the moment of time τ (ū and v̄ are defined by (1.4)). The next proposition
establishes the existence of a δ-neighborhood of the origin of Rn where the speci-
fied constraints on the control of the first player are consistently met at all points.
Moreover, it is possible to select this neighborhood in such a way that any tra-
jectory beginning from a point within it not only stays within a region where the
imposed control constraints are inactive indefinitely but also converges to the ori-
gin as time progresses.

Proposition 1.3 (Constraint-Free δ-Neighborhood). Let the Standing Assumption (*)
hold true, and let the matrix

Q̄ := Q + PBuKu − PBvKv

be positive definite. Then, there exist positive reals δ0 and δ, with δ0 > δ, such that:

(i) the inclusion −Kux ∈ U holds true for each x ∈ δ0B̄n;

(ii) for every point y ∈ δB̄n and for every τ ≥ 0, the inclusion x̄ū,v̄(t, y, τ) ∈ δ0B̄n

holds true for all t ≥ τ, and the trajectory x̄ū,v̄(t, y, τ) converges to the origin as
t→ +∞.
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Remark 1.4. For the sequel we will fix the parameter δ, as introduced in Proposition 1.3.

Remark 1.5. Proposition 1.1 implies the existence of a moment of time T ≥ t0, when
the state trajectory xu,v(·), corresponding to an arbitrary admissible control pair (u, v),
enters the above defined δ-neighborhood of the origin, i.e., xu,v(T) ∈ δB̄n.

1.2.3 Introducing a Finite-Time Horizon Game

Let us fix a real number T > 0, and consider the following differential game on
the finite-time interval [t0, T]

VU,T(x0, t0) := inf
u∈UU,T

sup
v∈VT

JT(x0, t0, u, v), (1.6)

subject to (1.1), where

JT(x0, t0, u, v) :=xᵀu,v(T)Pxu,v(T)

+
∫ T

t0

(
xᵀu,v(t)Qxu,v(t) + uᵀ(t)Ruu(t)− vᵀ(t)Rvv(t)

)
dt.

In this context, we utilize definitions of admissible controls similar to those in
the infinite-time horizon case, employing the subscript T to differentiate between
finite and infinite-time horizon case. Consequently, we use UU,T to represent the
set of all open-loop controls for the first player, and VT for the set of all open-loop
controls of the second player.

Remark 1.6. There exist sufficient conditions that ensure the existence of a Nash equilib-
rium for the differential game (1.6) (e.g., Ivanov, 1997 and Williams, 1980).

1.3 Sufficient Optimality Conditions

The following proposition provides sufficient conditions for the solution to the
differential game (1.2) when the two players do not necessarily choose their op-
timal strategies simultaneously. This is, for example, the case with Stackelberg
games, where one of the players has the advantage of choosing the optimal strat-
egy first (the leader), and the other player (the follower) takes this strategy as
given when minimizing the loss (see E. Dockner and Sorger, 2012). In some ap-
plications, Stackelberg games are a convenient representation of situations when,
rather than facing an intelligent opponent, the minimizing agent plays against
malevolent nature that acts as a leader and chooses disturbances such as to maxi-
mize the follower’s loss. Solutions of such games result in optimal strategies that
are robust to general uncertainty.

Proposition 1.7 (Stackelberg Equilibrium). Let the Standing Assumption (*) hold
true, and let (û, v̂) ∈ UU,T ×VT be a solution of the finite-time horizon differential game
(1.6) , i.e.,

JT(x0, t0, û, v̂) = inf
u∈UU

sup
v∈V

JT(x0, t0, u, v).
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We assume that ‖xû,v̂(T)‖ ≤ δ (where δ is introduced in Proposition 1.3) and define
(û∞, v̂∞) as follows:

(û∞, v̂∞):=

{
(û, v̂) on the interval [t0, T],
(ū, v̄) on the interval (T,+∞)

(ū and v̄ are the closed-loop controls defined by (1.4)). Then, (û∞, v̂∞) solves the infinite-
horizon differential game (1.2), i.e.,

J(x0, t0, û∞, v̂∞) = inf
u∈UU

sup
v∈V

J(x0, t0, u, v).

Remark 1.8. An intriguing question arises at this point: Suppose (û, v̂) is a solution to
the finite-time horizon differential game under the assumptions of Proposition 1.7. What
would be the nature of (û, v̂) over the interval [0, T]? Our observation suggests that there
exists a moment in time T̂ ∈ [0, T], such that û(t) belongs to the boundary of the set U
for each t ∈ [0, T̂]. However, determining this explicitly remains an open question for us.

If the finite-time horizon differential game (1.6) possesses a saddle point (Nash
equilibrium), then the corollary below allows us to extend this equilibrium to the
infinite-time horizon differential game (1.2).

Corollary 1.9 (Nash equilibrium). Let the Standing Assumption (*) hold true, and let
(û, v̂) ∈ UU,T × VT be a saddle point for the finite-horizon differential game (1.6), i.e.,

JT(x0, t0, û, v) ≤ JT(x0, t0, û, v̂) ≤ JT(x0, t0, u, v̂)

for all u ∈ UU,T and v ∈ VT. We assume that ‖xû,v̂(T)‖ ≤ δ (where δ is introduced in
Proposition 1.3) and define (û∞, v̂∞) as follows:

(û∞, v̂∞):=

{
(û, v̂) on the interval [t0, T],
(ū, v̄) on the interval (T,+∞)

(ū and v̄ are the closed-loop controls defined by (1.4)). Then, (û∞, v̂∞) provides a saddle
point (Nash equilibrium) for the infinite-horizon differential game (1.2), i.e.,

J(x0, t0, û∞, v) ≤ J(x0, t0, û∞, v̂∞) ≤ J(x0, t0, u, v̂∞)

for each u ∈ UU and each v ∈ V .

Remark 1.10. Corollary 1.9 in fact enables us to find the solution of the infinite-time
horizon differential game by transforming it into an equivalent finite-time horizon game,
which can be addressed using appropriate numerical methods.
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Chapter 2

Discrete-Time Linear-Quadratic
Game

“Change is the only constant in life. ”

Heraclitus (c. 535 – c. 475 BC)

2.1 Formulation of the Problem

Let k be an arbitrary non-negative integer. We denote by Nk the set of all non-
negative integers greater than or equal to k. Let us fix an arbitrary non-negative
integer k0 ∈ N0 and a vector x0 ∈ Rn. We consider a class of discrete-time non-
cooperative linear-quadratic games. The actions (controls) of the players are de-
termined by their choice of functions: u for the first player and v for the second
player.

For each positive integer m, we define the set

`2(Nk0 , Rm) :=

{(
wk0 , wk0+1, wk0+2, ...

)
:

∞

∑
k=k0

‖wk‖2 < ∞

}
,

which constitutes a Banach space with the norm ‖w‖2 =
(

∑∞
k=k0
‖wk‖2)1/2.

Both players may use open-loop or closed-loop controls. An open-loop control
u := {uk}k∈Nk0

of the first player is a sequence belonging to `2(Nk0 , Rmu) and
satisfying the relations uk ∈ Uk ⊂ Rmu for each k ∈ Nk0 . We denote by UU the set
of all open-loop controls of the first player

UU :=
{

u = (uk0 , uk0+1, ..., uk0+k, ...) : ui ∈ Ui, i = k0, k0 + 1, ..., k0 + k, ...
}

,
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where
U := Uk0 ×Uk0+1 × ...×Uk0+k × ....

In what follows, we will occasionally need the finite-time version of the game.
Thus, for some κ ∈ Nk0 , we will denote by U κ

U the set of admissible controls
starting at time k0 and ending at time κ, that is

U κ
U :=

{
uκ = (uk0 , uk0+1, ..., uκ) : ui ∈ Ui, i = k0, k0 + 1, ..., κ

}
. (2.1)

When we consider a shorter time interval, i.e., k > k0, it will be indicated by a
subscript in the notation as follows: U κ

k,U. This notational convention will also be
applied in the case where there are no constraints imposed on the player’s controls
(Uk = Rmu), except that in this case, the subscript U will be omitted for simplicity.
So, for instance, we will write U for the set of admissible (unconstrained) con-
trols on the infinite-time horizon starting from k0, and U κ

k for the set of admissible
controls starting at k and ending at κ.

Throughout the chapter, we assume that there are no control constraints for
the second player. An open-loop control v := {vk}k∈Nk0

of the second player is a

sequence, belonging to `2(Nk0 , Rmv) and satisfying the relations vk ∈ Rmv for each
k ∈Nk0 . We denote by V the set of all open-loop controls of the second player

V :=
{

v = (vk0 , vk0+1, ..., vk0+k, ...) : vi ∈ Rmv , i = k0, k0 + 1, ..., k0 + κ, ...
}

.

As previously, for each κ ∈ Nk0 , we will denote by Vκ the finite-dimensional
projection of V

Vκ :=
{

vκ = (vk0 , vk0+1, ..., vk) : vi ∈ Rmv , i = k0, k0 + 1, ..., κ
}

. (2.2)

The sets Vk and Vκ
k are defined in the same way as the corresponding control sets

of the first player.
Let u ∈ UU and v ∈ V be admissible controls of the first and second players,

respectively. The state trajectory

x = (xk0 , xk0+1, xk0+2, ...),

corresponding to this control pair is determined recursively by the dynamics of
the game, which is described as follows:

xk+1 = Axk + Buuk + Bvvk, xk0 = x0, k = k0, k0 + 1, k0 + 2, ..., (2.3)

where A, Bu, and Bv are matrices of dimensions n× n, n×mu, and n×mv, respec-
tively. Here xk, k ∈ Nk0 , and x0 denote the state of the system at the moment of
time k and the initial state at time k0, respectively.

A closed-loop control

uc = (uc
k0

, uc
k0+1, uc

k0+2, ...)

of the first player is a function of the form x→ uc(x) ∈ U, where

uc(x) := (uc
k0
(xk0), uc

k0+1(xk0+1), ..., uc
k(xk), ...)
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with uc
k(xk) ∈ Uk for each k = k0, k0 + 1, k0 + 2, .... A closed-loop control

vc = (vc
k0

, vc
k0+1, vc

k0+2, ...)

of the second player is defined analogously. Note that the closed-loop controls de-
pend only on the current state rather than the entire history of the process (Markov
property).

Let uc and vc be arbitrary admissible closed-loop controls of the first and sec-
ond players, respectively. The state trajectory

x = (xk0 , xk0+1, xk0+2, ...),

corresponding to this control pair is determined recursively as follows:

xk+1 = Axk + Buuc
k(xk) + Bvvc

k(xk), xk0 = x0, k = k0, k0 + 1, k0 + 2, ... .

If the function uc is linear, then uc
k(xk) = Kuk xk, where each Kuk , k ∈ Nk0 , is

a matrix of dimension mu × n. Analogously, if vc is linear, then vc
k(xk) = Kvk xk,

where each Kvk , k ∈Nk0 , is a matrix of dimension mv × n.
It is clear that one can define similarly admissible controls of mixed type (part

of their components are open-loop controls and the rest are closed-loop functions
depending on the current state of the system). The corresponding trajectory is de-
fined in a similar manner. An admissible control pair (u, v) is considered feasible
if, in addition, the criterion J as specified in (2.4) for this pair yields a finite value.

Across all admissible control pairs, we consider the following discrete-time
infinite horizon linear-quadratic game:

inf
u∈UU

sup
v∈V

J(x0, k0, u, v), (2.4)

where the objective function is defined as

J(x0, k0, u, v) :=
∞

∑
k=k0

(
xᵀk Qxk + uᵀ

k Ruuk − vᵀk Rvvk
)

.

Here, Q is an n × n symmetric positive semi-definite matrix, and Ru and Rv are
symmetric, positive definite matrices of dimensions mu × mu and mv × mv, re-
spectively. The objective is to find a pair of feasible controls (u, v) that solve the
problem 2.4.

Concerning the information pattern, we assume that both players know all pa-
rameters of the dynamics (the matrices A, Bu, and Bv) and of the objective function
(the matrices Q, Ru, and Rv). Moreover, we assume that both players have access
to the current system state xk, k ∈Nk0 .

Let k be a non-negative integer satisfying k ≥ k0, and let x ∈ Rn. The value
function VU : Rn ×Nk0 → R of the game (2.3)÷ (2.4) is defined by
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VU(x, k) := inf
u∈Uk,U

sup
v∈Vk

J(x, k, u, v).

In particular for U = Rmu ×Rmu × · · · ×Rmu × · · · , we omit the subscript ′U′, so

V(x, k) := inf
u∈Uk

sup
v∈Vk

J(x, k, u, v).

2.2 Preliminaries

Classical dynamic optimization problems are often solved by using Bellman’s
principle of optimality. Recall that, according to it, an optimal policy has the prop-
erty that, whatever the initial state and initial decision are, the remaining decisions
must constitute an optimal policy with regard to the state resulting from the first
decision. This principle provides a recursive expression for the optimal value
function, expressing the optimal cost-to-go in terms of the immediate cost and the
optimal cost-to-go at the next time step. It serves as a foundation for developing
algorithms for solving optimal control problems through dynamic programming
methods.

Below, we show that this principle applies also to the discrete-time min-max
optimal control problem and, hence, to the considered infinite-time horizon linear-
quadratic game. Consider the more general version of the game: Given the dy-
namics

xk+1 = fk(xk, uk, vk), xk0 = x0, k = k0, k0 + 1, k0 + 2, ...,

find a pair of admissible controls (u, v) that solve

inf
u∈UU

sup
v∈V

Jg(x0, k0, u, v),

where the objective and the corresponding value function are defined, respec-
tively, as

Jg(x0, k0, u, v) :=
∞

∑
k=k0

gk (xk, uk, vk)

Vg
U(x0, k0) := inf

u∈UU
sup
v∈V

Jg(x0, k0, u, v).

Theorem 2.1. (Bellman’s principle of optimality) Let k ≥ k0, x ∈ Rn, and let the value
Vg

U(x, k) be a real number. Then the following equality is satisfied:

Vg
U(x, k) = inf

uk∈Uk
sup

vk∈Rmv

{
gk (xk, uk, vk) + Vg

U ( fk (xk, uk, vk) , k + 1)
}

.

Remark 2.2. The same result can be easily derived to the more general case when con-
straints are imposed on the control of the second player. Moreover, the result holds if
the supremum and infimum are interchanged. Thus, if we choose a non-negative integer
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k ≥ k0, a point x ∈ Rn, and set

Vg
U(x, k) := sup

v∈Vk

inf
u∈Uk,U

Jg(x, k, u, v),

if Vg
U(x, k) is a real number, then Bellman’s principle of optimality implies that

Vg
U(x, k) = sup

vk∈Rmv
inf

uk∈Uk

{
gk(xk, uk, vk) + Vg

U ( fk (xk, uk, vk) , k + 1)
}

.

The subsequent assumption, in force throughout the remainder of this chap-
ter, defines an algebraic Riccati equation (2.5) for the game and specifies particu-
lar conditions for a matrix P that solves this equation. Broadly, these conditions
pertain to the existence of solutions of the maximization and minimization prob-
lems and guarantee properties like symmetry, positive definiteness, and specific
inequalities for P and related matrices in the Riccati equation. Moreover, the re-
quirements play a critical role in the stability and performance analysis of the
considered control systems.

StandingAssumption : (**)

The matrix P is a symmetric positive definite solution of the following algebraic Riccati
equation:

P = Q + Aᵀ(L−1)ᵀPA, (2.5)

where
L := I + (BuR−1

u Bᵀ
u − BvR−1

v Bᵀ
v )P

is an invertible matrix. In addition, we assume that ‖A‖ < 1, and the matrices

[P− ÃᵀPÃ] and [Rv − Bᵀ
v PBv]

are positive definite, where

Ã := A− (BuR−1
u Bᵀ

u − BvR−1
v Bᵀ

v )PL−1A.

Here, the norm of the matrix is defined as:

‖A‖ = max
‖x‖=1

‖Ax‖.

The proposition we introduce next provides a min-max type result for the un-
constrained game. This equivalence holds significant importance in game theory
and optimization, especially in scenarios characterized by competitive or adver-
sarial relationships. While the existing literature is replete with min-max theo-
rems, these often stipulate the compactness of at least one of the participating
sets. In our study, however, we demonstrate that for a quadratic objective func-
tion, such compactness conditions are not necessary.
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Proposition 2.3. Let the Standing Assumption (**) hold true. Then

min
u∈Rmu

max
v∈Rmv

{xᵀQx + uᵀRuu− vᵀRvv + (Ax + Buu + Bvv)ᵀP(Ax + Buu + Bvv)}

= max
v∈Rmv

min
u∈Rmu

{xᵀQx + uᵀRuu− vᵀRvv + (Ax + Buu + Bvv)ᵀP(Ax + Buu + Bvv)}

for each point x ∈ Rn.

2.3 Approximation of the Constrained Game

As noted earlier, the main idea of our approach is to approximate the game (2.3)÷
(2.4) by some game on a finite-time horizon. Let u ∈ UU and v ∈ V be arbitrary
admissible controls of the first and second players, respectively. For each κ ∈ Nk0 ,
we consider the game

inf
uκ∈U κ

U

sup
vκ∈Vκ

Jκ(x0, k0, uκ, vκ) (2.6)

subject to the dynamics (2.3), with uκ and vκ being defined by (2.1) and (2.2),
respectively. The game’s objective function is defined in the following manner:

Jκ(x0, k0, uκ, vκ) := xᵀκ+1Pxκ+1 +
κ

∑
k=k0

(
xᵀk Qxk + uᵀ

k Ruuk − vᵀk Rvvk
)

,

where P is the symmetric positive definite solution of the algebraic Riccati equa-
tion (2.5). The value function Vκ

U : Rn × {k0, k0 + 1, k0 + 2, ..., κ} → R of this game
is defined as

Vκ
U(x0, k0) := inf

uκ∈U κ
U

sup
vκ∈Vκ

Jκ(x0, k0, uκ, vκ).

Let us fix an arbitrary point x ∈ Rn, and let k be an arbitrary element of the
index set

Iκ
k0

:= {k0, k0 + 1, ..., κ}.
Then, clearly,

Vκ
U(x, κ) = xᵀPx. (2.7)

Also, we obtain from Bellman’s principle of optimality

Vκ
U(x, k) = inf

uk∈Uk
sup

vk∈Rmv

{
xᵀQx + uᵀ

k Ruuk − vᵀk Rvvk + Vκ
U(Ax + Buuk + Bvvk, k + 1)

}
.

Note that (2.7) combined with the equality above allows us to explicitly cal-
culate the value function Vκ

U(x, k) not only for the matrix P but for an arbitrary
positive definite matrix. Suppose that we know the value function Vκ

U(x, k).
Next, we examine the asymptotic properties of the system’s trajectory. This is es-
sential to establish the link between the game on an infinite-time horizon (2.6) and
a suitable finite-horizon game (2.4).
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Proposition 2.4. Let the Standing Assumption (**) hold true, let k0 ∈N0, let

(u, v) ∈ `2(Nk0 , Rmu)× `2(Nk0 , Rmv)

be arbitrary `2-sequences, and let x = (xk0 , xk0+1, xk0+2, ...) be the corresponding state
trajectory. Then

lim
k↑+∞

xk = 0.

The following theorem establishes a condition for the existence of a Nash equi-
librium for the unconstrained game (2.3)÷ (2.4). After deriving the solution of
the unconstrained game, which takes the form of linear closed-loop controls, we
will show how it can be used to solve the original problem where the controls of
the minimizing player are subject to constraints. In particular, we will prove that
there exists a moment of time when the constraints become no longer binding,
and from that moment on, the unconstrained optimal controls are applied.

Theorem 2.5. Let the Standing Assumption (**) hold true. We define matrices Ku and
Kv as follows:

Ku = R−1
u Bᵀ

uPL−1A and Kv = R−1
v Bᵀ

v PL−1A, (2.8)

and assume that ‖A− BuKu‖ < 1, ‖A + BvKv‖ < 1 and ‖A− BuKu + BvKv‖ < 1.
Then

V(x0, k0) = xᵀ0 Px0

= J(x0, k0, ũ, ṽ)
= min

u∈U
max
v∈V

J(x0, k0, u, v)

= max
v∈V

min
u∈U

J(x0, k0, u, v),

(2.9)

where
ũ := (ũk0 , ũk0+1, ũk0+2, ...) and ṽ := (ṽk0 , ṽk0+1, ṽk0+2, ...)

are linear closed-loop controls defined as ũk(x) = −Kux and ṽk(x) = Kvx for each
k ∈Nk0 and for every point x ∈ Rn.

We now return to the original game, where constraints on the control of the
first player are present. To establish the next result, we need an additional as-
sumption about the control sets of the minimizing player, namely that the sets
Uk, k ∈ Nk0 contain a convex neighborhood U of the origin in Rmu . Under this
assumption, the next proposition establishes the existence of a neighborhood of
the origin in Rn, where these control constraints are no longer binding.

Let us denote by x̃y
κ := (x̃y

κ , x̃y
κ+1, ...) the trajectory of the discrete system

x̃k+1 = Ãx̃k, x̃κ = y, k ∈Nκ

(starting from the point y at the moment τ), where the matrix Ã is introduced in
the Standing Assumption (**), i.e., x̃y

κ is induced by the closed-loop controls −Kux
and Kvx defined by (2.8).
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Proposition 2.6. Let all sets Uk, k = k0, k0 + 1, ..., contain a convex neighborhood U of
the origin in Rmu , and let the Standing Assumption (**) and the assumptions of Theorem
2.5 be satisfied. Then there exist a positive real number δ0 and another real number δ ∈
(0, δ0) such that:

i) −Kux ∈ U for each x ∈ δ0B̄n, where B̄n is the closed unit ball in Rn;
ii) for every point y ∈ δB̄n and for every κ ≥ k0, the inclusion x̃y

k ∈ δ0B̄n holds true
for all k ∈Nκ and the sequence {x̃y

k}
∞
k=κ tends to the origin as k→ +∞.

Going forward, we will fix the parameter δ, introduced in Proposition 2.6.

Remark 2.7. Notice that Proposition 2.4 implies the existence of a moment in time τ ≥ k0
such that the state trajectory x = (xk0 , xk0+1, xk0+2, . . .) induced by an arbitrary pair of
`2-sequences (u, v), starting from an arbitrary point y ∈ Rn, enters the δ-neighborhood
δB̄n of the origin, i.e., xτ ∈ δB̄n.

2.4 Sufficient Optimality Conditions

The ensuing theorem shows that, when constraints are imposed on the controls
of the first player, the value function of the infinite-time horizon game aligns with
its finite-time horizon counterpart, provided an appropriate choice of the terminal
moment κ is made.

Theorem 2.8. Let the Standing Assumption (**) hold true, let (ū, v̄) be an admissible
control pair for the problem (2.3)÷ (2.4), δ > 0 be the real number introduced in Propo-
sition 2.6 and let x̄ be the corresponding state trajectory. If the equality

VU(x0, k0) = J(x0, k0, ū, v̄)

holds then, there exists a non-negative integer κ ≥ k0 such that x̄κ ∈ δB̄ and

VU(x0, k0) = J(x0, k0, ūκ, v̄κ) = Vκ
U(x0, k0),

where ūκ and v̄κ are defined by (2.1) and (2.2).

Having established the equivalence between the infinite-time horizon game
and a suitably defined game on a finite-time horizon, the next result demonstrates
how the constrained game can be solved using the solution of the corresponding
unconstrained one. The following corollary essentially asserts that if we have the
solution to the game on a finite-time horizon and we extend it by applying the lin-
ear closed-loop controls of the unconstrained game, we would obtain the solution
of the infinite-time horizon constrained game.

Corollary 2.9. Let the Standing Assumption (**) hold true, let (ū, v̄) ∈ UU × V be an
admissible control pair for the problem (2.3)÷ (2.4), and let κ ≥ k0 be sufficiently large
so that the point x̄κ ∈ x̄κ belongs to δB̄n (δ is introduced in Proposition 2.6), where x̄κ is
the trajectory corresponding to the control pair (ūκ, v̄κ). Let

Vκ
U(x0, k0) = Jκ(x0, k0, ūκ, v̄κ),
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then
Vκ

U(x0, k0) = J(x0, k0, û, v̂) = VU(x0, k0),

where

(û, v̂):=

{
(ūκ, v̄κ) on the set {k0, k0 + 1, ..., κ},
(uc

κ+1, vc
κ+1) on the set {κ + 1, κ + 2, ...},

with uc
k(xk) = −Kuxk and vc

k(xk) = Kvxk for each k = κ + 1, κ + 2, ..., where the
matrices Ku and Kv are defined in Theorem 2.5.
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Chapter 3

Discrete-Time Dynamic Game

“Nature does not hurry, yet everything is accomplished. ”

Lao Tzu (6th century BC)

3.1 Formulation of the Discrete-Time Game

Denote by N the set of all non-negative integers and Rn the n-dimensional Eu-
clidean space. We fix a vector x0 in an open subset G ⊂ Rn and consider a two-
person discrete-time dynamic game on an infinite time horizon. The dynamics of
the game is described by the following discrete-time control system:

xk+1 = fk(xk, uk, vk), xk0 = x0, uk ∈ Uk, vk ∈ Vk, k ∈N. (3.1)

The notation and assumptions are further clarified as follows:

• N represents the set of all non-negative integers, indicating the time steps of
the system.

• x0 ∈ Rn is the initial state vector, located in an open subset G ⊂ Rn.

• k0 ∈N is the initial time, assumed to be 0 for simplicity.

• xk ∈ Rn denotes the state of the system at time k.

• Uk ⊆ Rmu and Vk ⊆ Rmv , for each k ∈N, are non-empty, closed, and convex
sets representing the control action spaces for the two players.

• The function fk : G× Ũk × Ṽk → Rn, for each k ∈ N, is continuously differ-
entiable.
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• Ũk and Ṽk are open sets that contain Uk and Vk respectively, for each k ∈ N,
expanding the domain of the function fk to facilitate its continuous differen-
tiability.

Both players influence the system through their choice of functions u : N →
Rmu for the first player and v : N→ Rmv for the second player.

We call a pair of control sequences (u, v), where u := {uk}∞
k=0, v := {vk}∞

k=0
admissible if for every k ∈ N, the inclusions uk ∈ Uk and vk ∈ Vk hold true. By
U and V , we denote the sets of all admissible strategies of the first and second
players, respectively.

For a given admissible control pair (u, v), the equality (3.1) generates the tra-
jectory x0, x1, . . . . Note that this trajectory may be extended either to infinity or to
the minimal number k, for which the following relation holds true: fk(xk, uk, vk) 6∈
G (if such a k exists). In the former case, we call the triple (x, u, v), where x :=
{xk}∞

k=0 an admissible process.
Given an admissible process (x, u, v), the state trajectory {xk}∞

k=0 can be repre-
sented from (3.1) as

xk+1 := f (uk,vk)
k ◦ f (uk−1,vk−1)

k−1 ◦ ... ◦ f (u0,v0)
0 (x0), k ∈N.

The symbol "◦" represents the composition of the corresponding maps, and
f (u,v)
k (x) denotes fk(x, u, v).

Given the dynamics (3.1), we consider the following discrete-time infinite hori-
zon dynamic game:

min
u∈U

J(x0, u, v), max
v∈V

J(x0, u, v), (3.2)

whose criterion is defined as:

J(x0, u, v) =
∞

∑
k=0

gk(xk, uk, vk). (3.3)

It is evident from (3.2) that the first player strives to "minimize" this criterion,
while the aim of the second player is to "maximize" it. Here, the functions gk :
G× Ũk × Ṽk → R, k ∈N, are assumed to be continuously differentiable.

In infinite horizon optimal control problems, as the objective is to maximize or
minimize some performance measure over an infinite time span the traditional
optimization criteria, such as minimizing or maximizing an objective function
over a finite time horizon, cannot be directly applied since the series (integrals)
involved may not converge.

The weakly overtaking optimality criterion provides a solution to this issue.
It states that a control is weakly overtaking optimal if, for any given alternative
control, there exists a time after which the cumulative cost (or reward) of the opti-
mal control is always better than the cumulative cost (or reward) of the alternative
control. This does not require the difference between the cumulative costs (or re-
wards) to grow indefinitely but only that the optimal control is not worse than
any other control as time goes to infinity.
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To clarify the meaning of this optimal control problem, for any K ∈N we denote

JK(x0, u, v) =
K

∑
k=0

gk(xk, uk, vk).

Definition 3.1. An admissible process (x̄, ū, v̄) is called weakly overtaking optimal
if for each ε > 0, for every positive integer K and for each admissible process (x, u, v)
there exists a positive integer κ > K such that

Jκ(x0, ū, v)− ε ≤ Jκ(x0, ū, v̄) ≤ Jκ(x0, u, v̄) + ε.

The pair (ū, v̄), which forms a weakly overtaking optimal process, is referred
to as a weakly overtaking Nash equilibrium.

Let (x̄, ū, v̄) be a weakly overtaking optimal process. For every k ∈ N and
for each vector ξ, we denote by xk,ξ = (xk, xk+1, ...) the trajectory induced by (3.1)
with an initial state of xk = ξ at time k, i.e.,

xk,ξ
s+1 := f (ūs,v̄s)

s ◦ f (ūs−1,v̄s−1)
s−1 ◦ ... ◦ f (ūk,v̄k)

k (ξ), s = k, k + 1, .... .

Clearly, xk,ξ may happen to be an infinite sequence or may terminate at the mini-
mal s > k such that fs(xk,ξ

s , ūs, v̄s) 6∈ G.

Remark 3.2. The above Definition 3.1, providing the meaning of the problem, is a mod-
ification of the one in Aseev, Krastanov, and Veliov, 2017 in the context of a dynamical
game.

In this line, similar to the cited above paper, we introduce the following as-
sumption and definitions.

Assumption 3.3. For every k ∈ N, there exist a real number αk > 0 and a sequence
{βk

s}∞
s=k with ∑∞

s=k βk
s < ∞, such that αkB(x̄k) ⊂ G, for every ξ ∈ αkB̄(x̄k) the sequence

xk,ξ is infinite, and

sup
ξ∈αkB̄(x̄k)

∥∥∥∥ ∂

∂ξ
gs(xk,ξ

s , ūs, v̄s)

∥∥∥∥ ≤ βk
s ,

where αkB̄(x̄k) is a closed ball in Rn centered at x̄k with a radius αk.

Assumption 3.3 implies that the series

∞

∑
s=k

∂

∂ξ
gs(xk,ξ

s , ūs, v̄s), k = 1, 2, ...

is absolutely convergent, uniformly with respect to ξ ∈ αkB̄(x̄k).

By the identity

gs(xk,ξ
s , ūs, v̄s) = gs( f (ūs−1,v̄s−1)

s−1 ◦ f (ūs−2,v̄s−2)
s−2 ◦ ... ◦ f (ūk,v̄k)

k (ξ), ūs, v̄s)
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and the chain rule we have that

∂

∂ξ
gs(xk,ξ

s , ūs, v̄s) =
∂

∂x
gs(xk,ξ

s , ūs, v̄s)
k
-∏

i=s−1

∂

∂x
fi(xk,ξ

i , ūi, v̄i), (3.4)

where the following notation is used:

k
-∏

i=s−1
Ai:=

{
As−1As−2...Ak if s > k
I if s ≤ k.

Here, Ai := ∂
∂x fi(xk,ξ

i , ūi, v̄i) and I denotes the identity matrix of dimension n× n.
Also, here we use the symbol -∏ instead of the usual symbol ∏ to indicate that the
"increment" of the running index i is -1 (since s > k).

Following again Aseev, Krastanov, and Veliov, 2017, we define the adjoint
sequence ψ := {ψk}∞

k=1 as:

ψk =
∞

∑
s=k

∂

∂ξ
gs(xk,ξ

s , ūs, v̄s)|ξ = x̄k
, k = 1, 2, ... .

Remark 3.4. Assumption 3.3 actually implies that ‖ψk‖ < ∞, k = 1, 2, .... Further-
more, we obtain from (3.4) that

ψk =
∞

∑
s=k

∂

∂ξ
gs(xk,ξ

s , ūs, v̄s)|ξ = x̄k

(taking into account that xk,x̄k
s = x̄s)

=
∞

∑
s=k

∂

∂x
gs(x̄s, ūs, v̄s)

k
-∏

t=s−1

∂

∂x
ft(x̄t, ūt, v̄t).

(3.5)

The second equality in (3.5) implies that the adjoint sequence, as defined, satisfies
the adjoint equation

ψk = ψk+1
∂

∂x
fk(x̄k, ūk, v̄k) +

∂

∂x
gk(x̄k, ūk, v̄k), k = 1, 2, ... . (3.6)

This is verified by the following chain of equalities:

ψk =
∞

∑
s=k

∂

∂x
gs(x̄s, ūs, v̄s)

k
-∏

i=s−1

∂

∂x
fi(x̄i, ūi, v̄i)

=
∂

∂x
gk(x̄k, ūk, v̄k) +

( ∞

∑
s=k+1

∂

∂x
gs(x̄s, ūs, v̄s)

k+1
-∏

i=s−1

∂

∂x
fi(x̄i, ūi, v̄i)

) ∂

∂x
fk(x̄k, ūk, v̄k)

=
∂

∂x
gk(x̄k, ūk, v̄k) + ψk+1

∂

∂x
fk(x̄k, ūk, v̄k).

(3.7)
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3.2 Preliminaries

The formulation of the results presented below necessitates the introduction of
the following definition:

Definition 3.5 (Bouligand tangent cone TS(ȳ)). Consider a Banach space Y and a
nonempty closed subset S of Y. Let ȳ be an arbitrary point of S. The set TS(ȳ), defined
as the collection of all w ∈ Y for which there exist a sequence of positive real numbers
{tµ}∞

µ=1 ↓ 0 and a sequence of points {wµ}∞
µ=1 ⊂ Y converging to w, satisfying ȳ +

tµwµ ∈ S for each µ = 1, 2, ..., is known as the Bouligand tangent cone to the closed
subset S at the point ȳ ∈ S (cf., for example, Aubin and Frankowska, 2009, Chapter 4.1).

The theorem provided in Aseev, Krastanov, and Veliov, 2017 as Theorem 2.2
establishes a local maximum condition for the Hamiltonian function. This condi-
tion is satisfied for a certain solution ψ = {ψk}∞

k=1, of the adjoint equation (3.6). To
identify the "correct" solution to this equation, additional conditions are needed,
usually in the form of a transversality condition on ψk, at k → ∞. The assertion
relies on Assumption 3.13, which guarantees that the definition of ψ yields a finite
vector. The theorem is formulated as follows:

Theorem 3.6 (Theorem 2.2 in Aseev, Krastanov, and Veliov, 2017). Let Assumption
3.13 be fulfilled, the pair (x̄, ū) be a weakly overtaking optimal process (in the context of
the OCP in Aseev, Krastanov, and Veliov, 2017), and let the adjoint sequence ψ be defined
by (3.13). Then, for every k ∈N, the following local maximum condition holds true:( ∂

∂v
gk(x̄k, v̄k) + ψk+1

∂

∂v
fk(x̄k, v̄k)

)
w ≤ 0 for every w ∈ TVk(v̄k),

where TVk(v̄k) is the Bouligand tangent cone introduced by Definition 3.5. ♦

The next statement is a corollary of the main result in Aseev, Krastanov, and
Veliov, 2017, Theorem 3.6. For its formulation, we introduce the matrices Zk, k ∈
N defined as

Zk :=
∂

∂x
fk−1(x̄k−1, ūk−1, v̄k−1)

∂

∂x
fk−2(x̄k−2, ūk−2, v̄k−2)...

∂

∂x
f0(x̄0, ū0, v̄0). (3.8)

Corollary 3.7. Let Assumption 3.3 be fulfilled and the triple (x̄, ū, v̄) be a weakly over-
taking optimal process. Let the adjoint sequence ψ = {ψk}∞

k=1 be defined by (3.5). Then,
for every k ∈N, the following local maximum condition holds true:( ∂

∂v
gk(x̄k, ūk, v̄k) + ψk+1

∂

∂v
fk(x̄k, ūk, v̄k)

)
w ≤ 0 for every w ∈ TVk(v̄k) (3.9)

as well as the transversality condition

lim
k→+∞

ψkZk = 0.

♦
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Remark 3.8. The function Hk : G×Rmu ×Rmv ×Rn → R, known as the Hamilto-
nian and incorporating the adjoint sequence ψ, is defined for each k ∈N as follows:

Hk(x, u, v, ψ) := gk(x, u, v) + ψ fk(x, u, v).

Using this function, the relations (3.1), (3.6), and (3.9) can be expressed as follows,
respectively:

x̄k+1 =
∂

∂ψk+1
Hk(x̄k, ūk, v̄k, ψk+1),

ψk =
∂

∂xk
Hk(x̄k, ūk, v̄k, ψk+1), (3.10)

and
∂

∂v
Hk(x̄k, ūk, v̄k, ψk+1)w ≤ 0 for every w ∈ TVk(v̄k).

3.3 Necessary Optimality Condition

A distinctive feature of discrete-time optimal control problems, compared to their
continuous-time counterparts, is the local nature of Pontryagin’s maximum prin-
ciples type for finite horizons. Specifically, in the absence of additional concavity-
type conditions (when addressing an optimal maximization control problem), the
maximum condition associated with the Hamiltonian only serves as a necessary
condition for a local maximum. This principle is also applicable to problems on
infinite horizons, as explored below.

Let the triple (x̄, ū, v̄) be a weakly overtaking optimal process and let the ad-
joint sequence ψ = {ψk}∞

k=1 be defined by (3.5). For the main result in this chapter,
we need the following assumption:

Assumption 3.9. The following conditions hold true:

(i) The function gk(x̄k, ·, v̄k) : Uk → R is convex. When ψ
j
k+1 > 0 (the j-component of

ψk+1), the j-component f j
k(x̄k, ·, v̄k) : Uk → R of the vector function fk(x̄k, ·, v̄k) :

Uk → Rn is convex and when ψ
j
k+1 ≤ 0, it is concave.

(ii) The function gk(x̄k, ūk, ·) : Vk → R is concave; When ψ
j
k+1 ≥ 0 (the j-component

of ψk+1), the j-component f j
k(x̄k, ūk, ·) : Vk → R of the vector function fk(x̄k, ūk, ·) :

Vk → Rn is concave and when ψ
j
k+1 < 0, it is convex.

Remark 3.10. Assumption 3.9 implies that for every k ∈N:

• the functionHk(x̄k, ·, v̄k, ψk+1) : Uk → R is convex;

• the functionHk(x̄k, ūk, ·, ψk+1) : Vk → R is concave.

Theorem 3.11 (Necessary Optimality Condition). Let the Assumptions 3.3 and 3.9
hold true. Let the control pair (ū, v̄) determines a weakly overtaking Nash equilibrium for
the problem (3.1)÷ (3.2) and let the adjoint sequence ψ = {ψk}∞

k=1 be defined by (3.5).
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Then, the adjoint sequence ψ = {ψk}∞
k=1 solves the adjoint system (3.10), and for every

k ∈N, the following conditions are satisfied:

(i) min
u∈Uk

Hk(x̄k, u, v̄k, ψk+1) = Hk(x̄k, ūk, v̄k, ψk+1) = max
v∈Vk
Hk(x̄k, ūk, v, ψk+1);

(ii) transversality condition
lim

k→+∞
ψkZk = 0,

where Zk is defined by (3.8).
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3.4 Discrete-Time Optimal Control Problem (OCP)

In the broad spectrum of dynamical games, optimal control problems without
disturbances emerge as a distinct and specialized subset.

By contextualizing optimal control as a partial case of dynamical games, we
recognize that the dynamics of a system responds to a single controller’s deci-
sions. In this perspective, optimal control can be seen as a singular player within
the intricate web of dynamic game scenarios. The player’s goal remains the same
– to determine optimal control inputs.

The section establishes a new sufficient optimality condition under specific
assumptions and shows its relevance to proving the minimum for the infinite-
horizon optimal control problem. It introduces a series of conditions, derivations,
leading to the theoretical foundations of optimality.

The subsequent sections will delve into the formulations of the problem.

3.4.1 Formulation of the Optimal Control Problem

In this scenario, the discrete-time control system is formulated to operate with-
out external disturbances by setting their representative terms to a default value,
chosen here as zero for simplicity. The system is defined as follows:

xk+1 = fk(xk, uk), xk0 = x0, uk ∈ Uk, k ∈N. (3.11)

The notation and assumptions are further clarified as follows:

• N denotes the set of all non-negative integers, including zero, indicating the
time steps of the system.

• k0 ∈ N represents the starting time, which is provisioned for simplicity to
be 0.

• x0 ∈ Rn specifies the initial state or point from which the system begins.

• Each Uk, for k ∈ N, is a non-empty, closed, and convex subset of Rm, defin-
ing the set of permissible control actions at each time step.

• The function fk : Rn × Ũk → Rn, for each k ∈ N, is continuously differ-
entiable. This function dictates the system’s evolution from state xk to xk+1
under the influence of control uk.

• Ũk is an open subset in Rm that includes the set Uk, expanding the domain
of the function fk to facilitate its continuous differentiability.

• n and m are the dimensions of the respective vector spaces.

The function influencing the system, considered as a control sequence, is de-
noted by

u := (u0, u1, ..., uk, ...).

A control sequence is considered admissible if each of its components satisfies
the following inclusion criteria: uk ∈ Uk, k ∈N.
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Assumption 3.12. Every admissible control sequence u is an element of a Banach space
(X, ‖ · ‖).

For every given admissible control sequence u, the equation (3.11) yields tra-
jectory x = (x0, x1, ..., xk, ...). The resulting pair (x, u) is referred to as an admissi-
ble process. For an admissible process (x, u), the state trajectory x is represented
trough (3.11) as:

xk+1 := f (uk)
k ◦ f (uk−1)

k−1 ◦ · · · ◦ f (u0)
0 (x0), k ∈N.

Here, the symbol ◦ denotes the composition of the corresponding maps, and
f (u)k (x) is defined as fk(x, u). An admissible process (x̄, ū) is termed as feasible if
J(x0, ū) is a real number, where the objective function (or simple the objective)
is given by

J(x0, u) :=
∞

∑
k=0

gk(xk, uk).

In this setup, each function gk : Rn × Ũk → R, k ∈ N, is assumed to be contin-
uously differentiable.

Over all admissible processes (x, u), we consider the following optimal control
problem:

J(x0, u)→ min . (3.12)

We refer to an admissible control sequence u∗ as local optimal if there exists a
neighborhood N of u∗ such that for any other admissible control sequence u ∈ N,
the inequality

J(x0, u∗) ≤ J(x0, u)

holds. If this inequality is satisfied by all admissible control sequences, then the
control sequence u∗ is referred to as the global optimal.

The optimal control sequence u∗ leads to an optimal trajectory x∗, which is the
state trajectory generated by applying u∗ to the system dynamics as defined in
equation (3.11). The resulting pair (x∗, u∗) is referred to as an local (glabal) opti-
mal process.

Let (x̄, ū) be any arbitrary feasible process. For each positive integer k, and
every vector ξ, we represent by xk,ξ = (xk, xk+1, ...) the trajectory induced by (3.11)
with the initial state xk = ξ at the time instant k, i.e.,

xk,ξ
s+1 := f (ūs)

s ◦ f (ūs−1)
s−1 ◦ · · · ◦ f (ūk)

k (ξ), s = k, k + 1, ... .

As stated in Aseev, Krastanov, and Veliov, 2017, we adopt the following as-
sumption, representing the disturbance-free variant of Assumption 3.3:

Assumption 3.13. For every positive integer k, there exist a real number αk > 0 and a
sequence {βk

s}∞
s=k with ∑∞

s=k βk
s < ∞ such that the following inequality holds true:

sup
ξ∈αkB̄(x̄k)

∥∥∥∥ ∂

∂ξ
gs(xk,ξ

s , ūs)

∥∥∥∥ ≤ βk
s , s = k, k + 1, ... ,
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where αkB̄(x̄k) is the closed ball in Rn centered at x̄k with radius αk.

Assumption 3.13 implies that, like its counterpart in the presence of distur-
bances, the sequence

∞

∑
s=k

∂

∂ξ
gs(xk,ξ

s , ūs), k = 1, 2, ... ,

is absolutely convergent. Moreover this convergence is uniform with respect to
all points ξ within the ball αkB̄(x̄k).

Additionally, through the identity

gs(xk,ξ
s , ūs) = gs

(
f (ūs−1)
s−1 ◦ f (ūs−2)

s−2 ◦ · · · ◦ f (ūk)
k (ξ), ūs

)
the application of the chain rule enables us to deduce that

∂

∂ξ
gs(xk,ξ

s , ūs) =
∂

∂x
gs(xk,ξ

s , ūs)
k
-∏

i=s−1

∂

∂x
fi(xk,ξ

i , ūi).

In accordance with Aseev, Krastanov, and Veliov, 2017, the no-disturbance
variant of the adjoint sequence ψ := {ψk}∞

k=1 is defined as follows:

ψk =
∞

∑
s=k

∂

∂ξ
gs(xk,ξ

s , ūs)|ξ=x̄k
=

∞

∑
s=k

∂

∂x
gs(x̄s, ūs)

k
-∏

i=s−1

∂

∂x
fi(x̄i, ūi). (3.13)

With the application of the second equality in (3.13), it becomes evident that
the adjoint sequence defined in this manner satisfies the adjoint equation.

ψk =
∂

∂x
gk(x̄k, ūk) + ψk+1

∂

∂x
fk(x̄k, ūk), k = 1, 2, ... ,

as shown in (3.7).
Using ψ, for every k ∈ N, we introduce the corresponding Hamiltonian func-

tionHk : Rn ×Rm ×Rn → R as follows:

Hk(x, u, ψ) := gk(x, u) + ψ fk(x, u).

3.4.2 The Objective-Hamiltonian Relation

In order to present the results derived in this section, we adopt the definition as
outlined by Aubin, 1984.

Definition 3.14 (Derivative in direction of TS(ȳ)). Let Y be a Banach space, S be a
nonempty closed subset of Y, ȳ be an arbitrary point of S, and w be an arbitrary element of
the Bouligand tangent cone TS(ȳ), introduced by Definition 3.5. We say that the function
h : S→ R is differentiable in direction w if the following limit exists:

lim
tµ↓0

h(ȳ + tµwµ)− h(ȳ)
tµ ,
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where the sequence {tµ}∞
µ=0 ↓ 0, the sequence {wµ}∞

µ=0 → w as µ → +∞, and ȳ +

tµwµ ∈ S for each µ = 1, 2, ... . We denote this limit by dh(ȳ; w) and call it derivative of
h in direction w ∈ TS(ȳ) at the point ȳ ∈ S.

Remark 3.15. Definition 3.14 is equivalent to the definition of contingent derivative for
the case of a single-valued mapping (cf., for example, Aubin, 1984).

The following statement establishes a relationship between the criterion J and
the Hamiltonian function, corresponding to the optimal control problem, at a fea-
sible process (x̄, ū). The statement essentially says that the derivative in the direc-
tion of the Bouligand tangent cone TU(ū) of the criterion J, due to a perturbation
in the control, can be computed as a sum of products. Each product in the sum
involves the components of the partial derivative of the Hamiltonian with respect
to the control variable, and the corresponding elements of the perturbation vec-
tor p, where p belongs to the tangent space of the control set U, which is defined
based on the control sets Us.

Proposition 3.16 (The Objective-Hamiltonian Relation). Let Assumptions 3.12 and
3.13 hold true, the pair (x̄, ū) be a feasible process, the corresponding adjoint sequence ψ
be defined by (3.13). Then for every positive integer τ and an index-set of non-negative
integers K := {k1, k2, ..., kτ} ⊂ N with k1 < k2 < · · · < kτ, the following relation
holds true:

dJ(x0, ū; p) =
τ

∑
i=1

( ∂

∂u
Hki(x̄ki , ūki , ψki+1)

)
pki ,

for each p := (p0, p1, p2, ..., pk, ...) ∈ TU(ū), where

U :=
{
(u0, u1, u2, ..., uk, ...) : us ∈ Us if s ∈ K; us = ūs if s 6∈ K

}
.

3.4.3 Sufficient Optimality Condition

The following theorem, which presents the main result of this section is consistent
with the principles of optimal control theory, where the Hamiltonian is crucial for
characterizing optimal states and control trajectories. The conditions outlined in
the theorem, such as the convex and bounded criterion J, and a minimum condi-
tion related to the Hamiltonian function H, are integral. When these conditions
are met, they collectively confirm that the process (x̄, ū) effectively minimizes the
criterion J, thereby resolving the optimal control problem.

Theorem 3.17. Let Assumptions 3.12 and 3.13 hold true, the pair (x̄, ū) be a feasible pro-
cess, the corresponding adjoint sequence ψ = {ψk}∞

k=1 be defined by (3.13), the criterion
J be convex and there exist constants c, r > 0 such that J(x0, u) ≤ c for all u ∈ rB̄(ū),
and let

Hk(x̄k, ūk, ψk+1) ≤ Hk(x̄k, u, ψk+1), u ∈ Uk for every k ∈N. (3.14)

Then (x̄, ū) is a global optimal process.
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Remark 3.18. We would like to point out that the convexity assumption in the formula-
tion of Theorem 3.17 does not imply that all functions gk, k ∈ N, are convex. Indeed, let
us consider the following simple illustrative example:

J(x0, u) =
(1

2
x2

0 −
1
2

u2
0

)
+
(1

2
x2

1 +
1
2

u2
1

)
→ min,

subject to
xk+1 = xk + 2uk, x0 ∈ R, uk ∈ [−1, 1], k ∈N.

Here,

g0(x0, u0) =
1
2

x2
0 −

1
2

u2
0

and
g1(x1, u1) =

1
2

x2
1 +

1
2

u2
1.

Clearly, g0 is not a convex function. However the criterion J is convex with respect to
(u0, u1) because

J(x0, u) =
(1

2
x2

0 −
1
2

u2
0

)
+
(1

2
(x0 + 2u0)

2 +
1
2

u2
1

)
= x2

0 + 2x0u0 +
3
2

u2
0 +

1
2

u2
1.
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Conclusion

The thesis has contributed to the progress regarding the optimality conditions
for optimal control problems, specifically focusing on scenarios marked by uncer-
tainty and constraints on the control variables. The work addresses robust control
challenges by exploring them within the context of two-person linear-quadratic
dynamic games.

Chapter 1 establishes conditions for the existence of a saddle point, also know
as Nash equilibrium for linear-quadratic differential game over an infinite time
horizon, especially in cases where the control actions of the minimizing player are
bounded. Additionally, these findings have been adapted to the context of Stack-
elberg differential games. The practical applicability of these results is illustrated
with an example of monetary policy.

In Chapter 2 we have established sufficient conditions for solving a linear-
quadratic control problem in discrete time across an infinite horizon, where once
again the controls of the minimizing player are subject to constraints. Our deriva-
tion hinges on Bellman’s Principle of Optimality and involves demonstrating an
equivalence between the infinite-time horizon problem and a corresponding finite-
time problem. By adopting this approach, a problem defined on a finite time hori-
zon is formulated, enabling its resolution through suitable numerical methods.
Additional contributions encompass a "min-max" theorem for the unconstrained
linear-quadratic problem, alongside an examination of the system’s trajectory’s
asymptotic properties. To illustrate the practical application of our findings, we
have applied these results to a model that describes the short-term dynamics of
an F-16 aircraft.

In Chapter 3 we study a discrete dynamical game on an infinite-time hori-
zon. The main result Theorem 3.11 provides a necessary condition of Pontrya-
gin’s maximum principle type. This condition is derived within the framework of
a specific discrete zero-sum game formulation. Additionally, the chapter narrows
its focus to a specific subset of discrete-time dynamical games that do not incor-
porate disturbances, examining them as a specialized case. The central result in
Section 3.4.3, Theorem 3.17, introduces a novel sufficient condition for optimal-
ity. Pivotal to the proofs of both theorems is the explicit definition of the adjoint
sequence ψ.

The presented example illustrates the possible practical applications.
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