SU “St. Kliment Ohridski”
Faculty of Mathematics and Informatics ® M

SUMMIT, Contract 70-123-195/12.02.2024

On invariant polynomials in free associative
algebras over a field of arbitrary characteristic

Silvia Boumova
Faculty of Mathematics and Informatics, University of Sofia,
and
Institute of Mathematics and Informatics, Bulgarian Academy of Sciences

boumova@fmi.uni-sofia.bg and silvi@math.bas.bg

23 May 2024
Invariant polynomials 23 May 2024 1/66



Joint Project with Vesselin Drensky,
Deyan Dzhundrekov and Martin Kassabov J

Joint Project with Vesselin Drensky, Sehmus Findik )




Invariant theory

Rota, GC. (2001). What is invariant theory, really? In: Crapo, H.,
Senato, D. (eds) Algebraic Combinatorics and Computer Science. Springer,
Milano. https://doi.org/10.1007/978-88-470-2107-5 4

Rota (2001)

“Invariant theory is the great romantic story of mathematics.”

“In our century, Lie theory and algebraic geometry, differential
algebra and algebraic combinatorics are offsprings of invariant
theory. ”

“Like the Arabian phoeniz arising from its ashes, classical
mvariant theory, once pronounced dead, is once again at the
forefront of mathematics.”




Invariant theory

Rota (2001)

“A pedestrian definition of invariant theory might go as follows:
invariant theory is the study of orbits of group actions. Such a
definition s correct, but it must be supplemented by a
programmatic statement. Hermann Weyl, in the introduction to
his book The Classical Groups, was the first in this century to give
a sweeping overview of the program of invariant theory. He
summarized this program in two basic assertions. The first states
that "all geometric facts are expressed by the vanishing of
ivariants”, and the second states that "all invariants are
mvariants of tensors”.”

“The program of invariant theory, from Boole to our day, s
precisely the translation of geometric facts into invariant algebraic
equations expressed in terms of tensors.”

v




Origins of Invariant Theory

@ Classically, invariant theory deals with polynomial functions,
which do not change under linear transformations.

@ The origins of the theory can be found to the works of Lagrange
(1770’s) and Gauss (early 1800’s) who studied the representation
of integers by quadratic binary forms and used the discriminant to
distinguish nonequivalent forms.

@ The real invariant theory began with the works of George Boole
and Otto Hesse in the 1840’s.

o Originally efforts were focused on describing properties of
polynomials by vanishing of invariants, but shifted towards finding
fundamental sets of invariants.

o Later, the further development of the theory continued in the
work of a pleiad of distinguished mathematicians, among them
Cayley, Sylvester, Clebsch, Gordan (known as “Konig der
Invariantentheorie”), and Hilbert.



Mathematicians who worked in the field

O. Hesse

D. Hilbert A. Clebsch P. Gordan
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Algebra of invariants

o Let K be a field of arbitrary characteristic.
o Let K[X,4] be the polynomial algebra in d variables over a field K.

o Let K(X,) be the free associative algebra freely generated by the
set Xq = {z1,...,24}, d > 2.



Every mathematics student knows the Fundamental theorem of
symmetric polynomials

Every symmetric polynomzial can be expressed in a unique way as
a polynomaal of the elementary symmetric polynomaals.

More precisely: We fix a field K, a set of d variables

X4 ={z1,...,z4} and consider the polynomial algebra
K[X4) = K[z1,...,z4). We define an action of the symmetric group Sq4
on K[X4] by

o: f(z1,..-,%a) = f(To1),---1To(a))y 0 € Sa, f € K[Xa).




Then:
(1) The algebra of symmetric polynomauals

K[X4]% = {f(Xa) € K[Xq] | o(f) = f for all o € Sg}
1s generated by
d
e :171+"'-|-€Ed=zmi,
=1

es = T1To2 + T1T3 + - + T4d—1T4 = Z-’Eﬂj,
1<J

€4 = T1': - Td;

(2) If f € K[X4]%¢, then there ezists a unique polynomial
p € K[y1,...,yd] such that f =p(e1,...,eq). In other words, the
elementary symmetric polynomsials are algebraically independent.




Invariant theory studies the following generalization:

Let char(K) = 0. The group GL4(K) of d x d invertible matrices acts
canonically from the left on the vector space with basis

X4 ={z1,...,24}. This action is extended diagonally on K[X4] by the
rule

9(f(z1,...,zq)) = f(9(z1),...,9(za)), g€ GL4(K),f € K[X4].

Definition

If G is a subgroup of GL4(K), then the algebra of G-invariants s

K[X4¢ ={f € K[X4]| 9(f) = f for all g € G}.

23 May 2024 10/ 66



Remark

Usually one considers another action of GL4(K) and assumes that
GL4(K) acts on a d-dimensional vector space V; with basis
{v1,...,v4}. Then one defines the polynomial functions

. Va— K, i=1,...,d,

by
wi(£1v1+“'+£dvd):£i7 Elr")gdeK-
If f(Xq) € K[X4] and g € GL4(K), then

9(f):v— flg *(w)), wveVa




Remark

Both ways do not differ essentially. The group GL4(K) and its
opposite GL4(K)°P (acting on V; from the right) are isomorphic by

GL4(K) > g — (¢! € GL4(K)°P,

where g° is the transpose of g, and then the “classical” action of
GL4(K) on the polynomials considered as functions is the same as our
“diagonal” action induced by the canonical action from the left of
GL4(K) on the vector space with basis Xg.

For our generalizations it is more convenient to consider our action of
GL4(K).




Problem: Describe K[X 4]

(1) Is the algebra K[X4]C finitely generated for all subgroups G of
GL4(K)?

This is the main motivation for the 14-th problem of Hilbert from the
International Congress of Mathematicians in Paris in 1900.

Answers.
o G - finite - YES (Emmy Noether (1915, 1926));



Answers.

Der Endlichkeitssatz der Invarianten endlicher Gruppen.

Vou

Emuy Noerner in Erlangen.

Im folgend.en m].l ein gm ela-mtmr — nur auf der Theoris der
— Endlichkeitsbeweis der Invari

tan endlicher G-ruppen gebracht werden, der zugleich eine wirkliche Angabe
des .vollen Systems liefert; wihrend der gewdhnliche, suf das Hilbertsche
‘Theorem von der Modulbesis (Ann. 36) sich stiltzende Beweis nur Existenz-
beweis ist.*)

Die endliche Gruppe § bestehe ans den h linearen Transformationen
(von nichtverschwindender Determinante) A, - -- A., wobei durch 4, die
lineare Transformation

) a®
- LI _2 ar T

oder abkiirzend: (.tf‘])—‘{,(x) dargestellt sei. Die Gruppe $ fithrt also
die Reihe (#) mit den Elementen z, - -- z, tiber in die Reihen (2®) mit
den Elementen z{--.a{). Ds unter 4, --- 4, die Identitit .enthalten
sein mu, ist auch unter den Reihen (z®) die Reihe (z) enthalten. —
Unter einer ganzen rationalen (absoluten) Invariants der Gruppe sei eine
solche ganze rationsle Fuoktion von , -- -, verstanden, die bei An-
wendung von A, --- 4, identisch ungeindert bleibt; fiir eine solche In-
variante f(z) gilt also:

(o] Fl) = fla®) = e m ) = 5 - D f(a®).
R T

Emmy Noether



Answers.

Endlichkeitssatz of Emmy Noether, 1916.

Let K be a field of characteristic 0 and G be a finite subgroup of
GLg4(K). Then the algebra of invariants K[X4|® is finitely
generated and has a system of generators fi,..., fm, where each f;
15 homogeneous polynomial of degree bounded by the order of the
group G.

v

For reductive groups and characteristic 0, the proof is also contained in
Hilbert’s work.
Emmy Noether also gave proof for fields of any characteristic in 1926.



Answers.

@ G-reductive (in some sense “nice”’) — YES (Although not stated in
this generality, the (nonconstructive) proof is contained in the
work of Hilbert from 1890-1893);

@ In the general case — NO (the counterexample of Nagata in the
1950s).



Counterexample for infinite groups in 1959

ON THE 14-TH PROBLEM OF HILBERT.**

To Professor Osecar Zariski on his sizlielh birthday.

By Masayosnl NAgATA.

The following problem is known as the 14-th problem of Hilbert:

Let & be a field and let z,,- - -, 2, be algebraically independent elements
over k. Let K be a subfield of k(@ - -, a) coniaining k. Is k[@,- « -, @)
NK finitely generated gver &k?

The purpose of the present paper iz to answer the question in the
negative by giving a counter-example. Tn fact, we shall give a counter-example
to the following restricted case, which was the original question of Hilbert,
and which we shall call the original 1j-th problem:

Let G be a subgroup of the full linear group of k{#,- - -, 2.] and let o
be the set of elements of k[x,,- - -, 2,] which are invariant under G. Is o
finitely generated over k?

We shall note that the construction of our example is independent of the
characteristic (and k may be the field of ecomplex numbers).

Masayoshi Nagata



Problem: Describe K[X 4]

(2) If K[X4]€ is generated by f1,..., fm, then it is a homomorphic
image of K[Y,,] (7 : K[Y;] — K[X4]€ is defined by n(y;) = f;). Find
generators of the ideal ker(w).

Answers. Explicit sets of generators for different groups G.

Hilbert’s Basissatz. Every tdeal of K[Y,,] is finitely generated.
(Nonconstructive proof.)



Chevalley-Shephard-Todd

Theorem (Chevalley-Shephard-Todd)

For G finite K[X4)¢ = K[Yy] if and only if G < GL4(K) is
generated by pseudo-reflections (matrices of finite multiplicative
order with all eigenvalues except one equal to 1 or matrices of
finite multiplicative order that fix a hyperplane).




K[X,4) and K[X4]¢ are graded
Definition.

A ring R is said to be graded, if it can be decomposed as direct sum

of additive groups, such that R;R; C R, ;.
An algebra A is said to be graded if it is graded as a ring.

For the polynomial algebra and algebra of invariants, there is the
natural grading

K[X4 = PKX)® and K[Xa]C = P(K[X%)P.
k>0 k>0




Theorem (Hilbert-Serre).
The Hilbert series H(K[X4]%,t) = 12, dim(K[X4]¢)™t" is a
rational function of ¢ in the form
f(t)
[1(1-1t%)

=1

, f(8) € Z[t].

Theorem (Molien Formula, 1897).
For a finite group G,

H(K[X4)% t) =
(K1Xd] ]G\Zdetl—gt)




Noncommutative generalizations

Problem

Replace the polynomial algebra K[X4] with another noncommutative
algebra which shares many of the properties of K[X].

The most natural candidate is the free associative algebra K (X,)
(or the algebra of polynomials in d noncommuting variables). This
algebra has the same universal property as K|[Xg]:

o If R 1s a commutative algebra, then every mapping Xq4 — R

can be extended in a unique way to a homomorphism
K[X4) — R.

o If R 1s an associative algebra, then every mapping Xq — R can
be extended tn a unique way to a homomorphism K(X4) — R.



Symmetric polynomial in K (Xj)

Problem
Describe the symmetric polynomials in K (Xg). J

Answer - M.C. Wolf, Symmetric functions of non-commutative elements, Duke
Math. J. 2 (1936), No. 4, 626-637.

Next step

Develop noncommutative invariant theory and study K (X,)€.

Go further

Study F(X4)¢, where F(X,) is an algebra with universal property
similar to those of K[X,4] and K (X ) (the free Lie algebra L(X ), the
free nonassociative algebra K{X4}, the relatively free algebra F;(*0) of
a variety of algebras ).

— = . = = aYala



The main results of Margarete Wolf

Theorem

(i) The algebra of symmetric polynomials K(Xg)57™4) d > 2, is a
free associative algebra over any field K.

(ii) It has a homogeneous system of free generators {f; | j € J}
such that for any n > 1 there is at least one generator of degree n.

(iii) The number of homogeneous polynomials of degree n is the
same 1n every homogeneous free generating system.

(iv) If f € K(X4)%™(4) has the presentation
f= > aififim aj€K,
J:(]]-:Jm)

then the coefficients a; are linear combinations with integer
coeffictents of the coefficients of f(Xg).




Symmetric polynomials in two noncommuting
variables

Theorem (Wolf)

In the free generating set of K (X3)5? there is precisely one element of
degree n for each n > 1.




What happened with noncommutative symmetric
polynomials after Margarete Wolf?

o Symmetric functions in commuting variables are studied from
different points of view. The same have happened in the
noncommutative case. In her paper Margarete Wolf studied the
algebraic properties of K (X,)%.

@ The next result in this direction appeared more than 30 years
later in

G.M. Bergman, P.M. Cohn, Symmetric elements in free powers of rings, J.

Lond. Math. Soc., II. Ser. 1 (1969), 525-534 where the authors generalized
the main result of Wolf.



There is an enourmous literature devoted to different aspects in the
theory. We shall mention few papers and one book only.

I.M. Gelfand, D. Krob, A. Lascoux, B. Leclerc, V.S. Retakh, J.-Y. Thibon,
Noncommutative symmetric functions, Adv. Math. 112 (1995), No. 2, 218-348.

S. Fomin and C. Greene, Noncommutative Schur functions and their applications,
Discrete Math. 193 (1998), 179-200.

M.H. Rosas, B.E. Sagan, Symmetric functions in noncommuting variables, Trans.
Am. Math. Soc. 358 (2006), No. 1, 215-232.

M.H. Rosas, B.E. Sagan, Symmetric functions in noncommuting variables, Trans.
Am. Math. Soc. 358 (2006), No. 1, 215-232.

N. Bergeron, C. Reutenauer, M. Rosas, M. Zabrocki, Invariants and
coinvariants of the symmetric groups in noncommuting variables, Canad. J. Math. 60
(2008), No. 2, 266-296.

D.S. Kaliuzhnyi-Verbovetskyi, V. Vinnikov, Foundations of Free
Noncommutative Function Theory, Mathematical Surveys and Monographs, vol. 199,
Providence, RI, American Mathematical Society, 2014.



Noncommutative invariant theory

o Let K be a field with arbitrary characteristic.

@ As in the commutative case we assume that the general linear
group GL4(K) acts on the vector space with basis X4 and extend
this action diagonally on K(X4) by the rule

g(f(ml)' 0 '1$d)) = f(g(fl:l),- 0o »g(xd))) ge GLd(K):f € K<Xd>

e If G is a subgroup of GL4(K), then the algebra of G-invariants
is

K(Xy)¢ ={f € K(X3) | 9(f) = f for all g € G}.



Similarity and differences between commutative and
noncommutative invariant theory

The first natural questions are:

o Whaich results in commutative invariant theory hold also in
the noncommautative case?

@ Which results are not true?



The problem for finite generation

@ The group G C GL4(K) acts on the vector space with basis X4 by
scalar multiplication if G consists of scalar matrices.

o If G is finite and acts by scalar multiplication, then G is cyclic. If
|G| = q then K (X4)€ is generated by all monomials of degree q.
The number of such monomials is equal to d? and hence the
algebra K (X,4)¢ is isomorphic to the free algebra K (Yyq).



Koryukin, Dicks and Formanek, Kharchenko

It has turned out that the analogue of the theorem of Emmy
Noether for the finite generation of K[X4]€ for finite groups G holds
for K(X4)€ in this very special case only.

Theorem (Koryukin, Dicks and Formanek, Kharchenko)

Let G be a finite subgroup of GLq(K). Then K(X4)¢ is finitely
generated if and only if G acts on the vector space with basis X4 by
scalar multiplication.

W. Dicks, E. Formanek, Poincaré series and a problem of S. Montgomery, Lin.
Multilin. Algebra 12 (1982), 21-30.

V.K. Kharchenko, Noncommutative invariants of finite groups and Noetherian
varieties, J. Pure Appl. Algebra 31 (1984), 83-90.




Their results were generalized in 1984 for infinite groups.

Theorem (Koryukin)

Let G be an arbitrary (possibly infinite) subgroup of the matriz
group GL4(K). Let KY,, be a minimal (with respect to inclusion)
vector subspace of K X4 such that K(X3)¢ C K(Y;,). Then K(X3)®
1s finitely generated if and only if G acts on KY,, as a finite cyclic
group of scalar matrices.

Koryukin, A. N. Noncommutative invariants of reductive groups. Algebra
Logika 23, 4 (1984), 419-429. Translation: Algebra and Logic 1984; 23




Koryukin’s 1984 Paper

YIK 519, 48

O HEKOMMYTATHBHBIX HHBAPMAHTAX PEAYKTHBHHX TPYTIN
A. H, KOPIOKIH

B nactostuielt paBoTe paccMaTpiiBa@TCsl BONPOC O KoHewHoH NOpOXABeMOCTH amretp
WHBApHAHTOB HEeKOTOPBIX AMHEHBIX FPyTUl, AEACTBYOUMX Ha KOHE'YHO-I0 POMAGHH bIX A0~
colaTuaHbIX anrebpax, [lpi cTalaapThoil locTaHoBKe BONpoca B HOKOMMYT aTHBHOM
Crywae yme (Ui KOHEXHBIX IPYiui NOTYHAKTCH B OCHOBHOM OTPHUATOMBHLIG Pe3yMbLTaTEL
B aToM Cnyuae clpapediipa cieAywwas Teopena, nokasainas HesasHcHmO [LiUKCOM W
PoprIaHEKOAL [_1] 11 XapyeHKo [2]:

TEOPEMA, IycTpob G» - KoBeuwuHas rpynna auweef-

bl X npeoﬁpaaonauunxoﬂequouepuoro npoc=

Ed

pancrtea V . PaccyMoOTpuUM WHAYUHpPpOBAHROS

a9

pedcTBHE G— Ha TeH3oOpHOR anraGFEF(V)npcc-
Tpa'HcTaaV. Torana aare®pa ﬁ)lnaplla!'l‘th(V)G
KUHO"(HO—ﬂopG)ﬁﬂENaBTOMI’(TDI\I’KQBTON cny-
wyae, kKoraa G——rpynna cxanAapEWX npeaobpaaso

BaHHUMB,



Finite generation with additional action

Theorem (Koryukin)

Let the symmetric group S, of degree n, n = 1,2, ..., act from the
right on the homogeneous elements of degree n in K(X4) by the
rule

—1
(mil ;[;zn) og T = ;z;ig_l(l) ..-;z;ig_l(n), ogES,.

We equip the algebra K(X;) with this additional action and denote
it (K(X4)€,0) - an S-algebra.

Let the field K be arbitrary and let G be a reductive subgroup of
GL4(K) (i.e. all rational representations of G are completely
reducible). Then the S-algebra (K(X4)€,0) (with this additional
action) s finitely generated.

A.N. Koryukin, Noncommutative invariants of reductive groups (Russian),
Algebra i Logika 23 (1984), No. 4, 419-429. Translation: Algebra Logic 23 (1984),

290-296.




What happens with the Chevalley-Shephard-Todd
theorem

Theorem. (Lane, Kharchenko)

Let G be a finite subgroup of GL4(K). Then the algebra of
noncommutative G-invariants K(X;)¢ is free.

D.R. Lane, Free Algebras of Rank Two and Their Automorphisms, Ph.D. Thests,
Bedford College, London, 1976.

V.K. Kharchenko, Algebra of invariants of free algebras (Russian), Algebra ¢
Logika 17 (1978), 478-487. Translation: Algebra and Logic 17 (1978), 316-321.




Analogue for Molien’s Formula

Molien’s formula has a complete analogue in the noncommutative case,
it is obtained by changing

Theorem (Dicks and Formanek, 1982).

If G C GL4(K) s a finite group and the field K has characteristic
0, then the Hilbert series can be calculated by

H(Fex%t) = |G| Z 1 tr(g




By the Maschke theorem if the field K is of characteristic 0 or of
characteristic p > 0 and p does not divide the order of G, then the
finite dimensional representations of G are completely reducible. Hence
this inspires the following problem.

Problem.

Let G be a finite subgroup of GL4(K) and let char (K) =0 or
char (K) =p > 0 and p does not divide the order of G.

(i) For a mintmal homogeneous generating system of the
S-algebra (K{X4)C, o) is there a bound of the degree of the
generators in terms of the order |G| of G, the rank d of K(Xg4) and
the characteristic of K ?

(ii) Find a finite system of generators of (K(X4)¢,0) for concrete
groups G.

(iii) If the commutative algebra K[X4)C is generated by a
homogeneous system {f1,..., fm}, can this system be lifted to a
system of generators of (K(X4)€,0)?

- = = = S he;



Remark

By the Endlichkeitsatz of Emmy Noether if char (K) = 0, then
K[X4)€ has a set of generators of degree < |G| for any finite group G.

By a result of Fleischmann (2000) and Fogarty (2001) the same
upper bound holds if char (K) = p > 0 does not divide the order |G| of
G.

Hence in Problem (i) it is reasonably to restrict our attention to the
order of G and the rank d of K(Xg).




Let A be the partition of n, i.e.
A=(A1,--,Ad)-

We denote

In particular,

are the power sums and

pamy = D, To() - To(n) N <d,
o€Sym(d)

are the noncommutative analogues of the elementary symmetric
polynomials.



TJM - S.B., Drensky, Dzhundrekov, Kassabov

Lemma

Over any field K of arbitrary characteristic the S-algebra
(K(X4)%7™(@) o) is generated by the power sums Pim), m=1,2....

Theorem

Let char (K) =0 or char (K) =p > d. Then the algebra
(K(Xd)sym(d), o) of the symmetric polynomials in d variables is
generated as an S-algebra by the elementary symmetric
polynomuals piy, ¢t =1,...,d.




TJM - S.B., Drensky, Dzhundrekov, Kassabov

Newton formulas: )

ke = (1) ex—ips

=1
Noncommutative analogue of the Newton formulas:

Lemma

In K{(X4)
E—1

Kb + (—1) ey + 2 (—1)* 7l (Pas-p Y eesno) =0, k<4,

=1
d—1

d'py + (—1)ddp(1d)p(k_d) + Z(—l)d_li! (p(ld—i)p(k_d+i) ZaGSh,U) =0, k>d
=i\ )

23 May 2024 41/66



TJM - S.B., Drensky, Dzhundrekov, Kassabov

o k <d, we denote by Sh;,2=0,1,...,k, the set of all “shuffles”
o € Sym(k) with the property that o~ ! preserves the orders both
ofl,...,k—tandof k—z2+1,...,k.

@ k> dtheset Sh;,2=0,1,...,d, consists of all permutations
o € Sym(k), which fix d +1,...,k and o~ preserve the orders
bothof 1,...,d—tandofd—12+1,...,d.



We give examples for small d = 3, 4.

6p(3) = 3p(1,1,1) — P(1,1)P() © (id + (321) + (23))

24p(4) = —4P(1,1,1,1) + P(1,1,1)P(1) © (id + (34) + (432) + (4321))

— 2p1,1)P(2) © (id + (23) + (321) + (13)(24) + (234) + (2134))+
+ 6p(1)p(3) o (ld + (12) + (123) + (1234))



MDPI - S.B., Drensky, Dzhundrekov, Kassabov

Theorem

When d > char (K) = p > 0 the S-algebra (K (X4)57™(9), o) is not
finitely generated.

Theorem

If d > char (K) = p > 0, then the set {p, | n =1,2,...} is a minimal
generating set of the S-algebra (K (X4)S7™(4), o).




MDPI - S.B., Drensky, Dzhundrekov, Kassabov

Remark

For d' > d, we have a projection from K(Xg) to K(Xg4), which
sends the extra generators to 0. It 1s easy to see that this
projection induces a surjective map between the S-algebras of
symmetric polynomuals. Thus, 1t 1s enough to establish that the
S-algebra (K(Xd)sym(d), o) in not finitely generated in the case
char (K) =p=d.




MDPI - S.B., Drensky, Dzhundrekov, Kassabov

o Augmentation ideal (K (Xz)Sy=(9), o)+ of (K(Xg)5™(d) o), ie.,
the ideal of polynomials without a constant term in
(K (Xa)37™(@), o).

o Let M, be the quotient of (K(Xd)sym(d), o)+ by its square, i.e.,
2
My = (KO™0,0) " o (((K(x07,0)7)')

where o(V') denotes the submodule of K(X4) generated by V'
under the action o.

@ Myg=@,cnM, én) is naturally graded and each homogeneous

component, Mén), is an Sym(n)-module, i.e., there is a natural
o-action on M.



MDPI - S.B., Drensky, Dzhundrekov, Kassabov

Lemma

The vector space, My, 1s generated as a o-module and as a vector
space by the images of the power sums

Pn=2z7+--+zZ,n=12....




Consider the abelianization map 7 : K(X4) — K[X4] and the map
induced by it on the subalgebras of symmetric polynomials. The map,
T, is an algebra homomorphism.

Lemma

The map, m, sends a generating set of the S-algebra
(K(Xd)sym(d), o) to a generating set of the commutative algebra
T((K(Xa)37™¥), 0)) C K[Xq]™(9).




MDPI - S.B., Drensky, Dzhundrekov, Kassabov

The S-algebra (K (X4)57™(4), o) is not finitely generated if we can show
that its image under 7 is not finitely generated.

Remark

Although the map 7 : K(Xg4) — K[X4] is surjective it does not
induce a surjective map between K(Xq)57™d) and K[X4)5y™(d),

For example, if char (K) = 2, then
m(Z12y + To21) = 0 € K[Xo]SV™(2)

and the elementary symmetric function es = x1zs s not in the
image of T.




Let u be a monomial (either in K(Xy) or in K[X4]). Since the action of
Sym(d) preserves the set of monomials, one can construct invariants by
summing over the orbits of Sym(d) acting on the set of monomials, i.e.,

You= > gu)

g€Sym(d)/Hy

is in the algebra of invariants, where H,, is the stabilizer of the
monomial  under the action of the symmetric group Sym(d).



MDPI - S.B., Drensky, Dzhundrekov, Kassabov

Lemma

For any monomial u € K(Xg), there exists an integer constant

¢y € N such that
W(Z’u) = cu(Zﬂ(u)>

Moreover, in the case p = d the constant ¢, s 0 1n K if and only
of m(u) = z{z5 - -z, for some s > 1.




This is a nontrivial statement because > is not an algebraic operation
and it is not preserved by the projection =.

For example
2 2 2 2 2 2 2
> aizans = 23Toz3+ 2T LT+ T T3+ TFT3LLHTFT1To+E5T2E1 € K(X3)

and
2 _ 2 2 2
TiToT3 = TIToT3 + T5T1T3 + T3T1Z2 € K[ X3).



MDPI - S.B., Drensky, Dzhundrekov, Kassabov

Lemma
In the case d = p = char K, the commutative algebra
(K (Xg)™) € Kley, ..., eq = K[Xq7™()

is spanned by all products, e ---e]*®, of the elementary
symmetric polynomials ezcept the powers, ey*, of ep.




MDPI - S.B., Drensky, Dzhundrekov, Kassabov

Theorem

When d > char (K) = p > 0, the S-algebra (K (X4)5™d) o) is not
finitely generated.

Theorem

Ifd > char (K) =p > 0, then the set{p, | n=1,2,...} isa
minimal generating set of the S-algebra (K (Xg)S7™=(9), o).




Dihedral invariants - S.B., V. Drensky, S. Findik

Algebra C({X,)P?" of invariants of the dihedral group Ds,.
We assume that the dihedral group
Dyn = (p, 7|p" = 7% = (1p)* = 1)
acts on the free associative algebra C(u, v) as

p:u+—Eu T:UV

R U—u

where £ is the n-th root of unity.
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Theorem (Dicks and Formanek, 1982)

The Hilbert series of the algebra of invariants K (X ) of a finite
subgroup G of GL4(K) is

H(K(X
( |G|Zl—tr

In this part, we aim to present a basis, a set of generators of the free
algebra C(u,v)P?" and compute its Hilbert series.




Proper monomial and polynomial

Definition - proper monomial

@ We call a monomial w(u,v) € C(u,v)P?" proper monomial, if it
satisfies the following conditions:
* w(u,v) = uw'(u,v), for some w'(u,v) € C{u,v)
* deg, w —deg, w =0 ( mod n)
* w(u,v) = uw; ... wg, for some w; € u,v, then

deg, (vw; ... w;) — deg, (uw;y ... w;) Z0 ( mod n)

for all I < k provided wiy1 = u.

Definition - proper polynomial

We call a polynomial w(u,v) + w(v,u) proper polynomial if w(u,v)
is a proper monomial.




[Mlustration

The monomial u*v = 4% - uv is not a proper monomial since

degu (’11,3) - deg'u (u3)
deg,, (uv) — deg, (uv)

0 ( mod 3)
0 ( mod 3)

However, 4® and v are proper monomials and
3 3
u° +v°, Uuv+vu

are proper polynomials.



Dihedral invariants

Theorem

(1) The vector space C{u,v)P?" is of basis consisting of 1 and
elements of the form

w(u,v) + w(v,u)
such that w(u,v) s a product of proper monomaials.

(i1) The free algebra C(u,v)P?" is generated by proper
polynomzals.




Let hon(t) and go,(t) be the Hilbert series and the generating function
of the free algebra C(u,v)P?", respectively.

Theorem
(2) fn=2m+1, m > 1, then
1 1 1 & 1
hon(t) = =4+ ——— + = - -
() = 5 2n(1 — 2t) nkz::ll—2cos(%7”)t
(12) f n=2m+ 2, m > 1, then
1 1 1 1 & 1
hon(t) = = N2
2n(t) 2 + 2n(1 — 2t) + 2n(1 4 2t) + n ,;1 1 — 2cos(Zkm ¢




Theorem

The S-algebra C(u,v)P?" is generated (as an S-algebra) by uv + vu
and u™ + v".

Theorem
S-algebra C(u,v)P?" is spanned by

Sgo00 = (u®v? +v®u*) oo, a=12,...,0 € Sym,,,

Dive) o T = (W0v+v%u) o7, b—c=0 (modn),7 € Sym,,,,
(b,e) "

i.e. it is generated as an S-algebra by

sq = u*v® +v%u®, a=1,2,...,

Po,e) = ubv® + ’vbuc, b—c=0 (mod n).




Noncommutative alternative polynomials

Any noncommutative alternative polynomial f € K (X)) can
be written as

f=Ffi+ fa

where f1 1s symmetric polynomial in d non commuting variables
and fs 1s alternating, i.e. fo changes sign whenever we exchange
any two vartables. )

Since the algebra of alternative noncommutative polynomials contains
the algebra of symmetric noncommutative ones, this allows us to only

study alternating polynomaials.



If u € (X4) is a monomial in d noncommuting variables, by > u we
Al
denote the alternating sum

The S-algebra of the noncommutative alternative polynomials is
generated by the elementary symmetric polynomials p(;:), 1=1,---,d,

together with the polynomials sx = Ea:’f_la:g, k=12,....
Al

We shrink the generating set {p(;:) |4 =1,---,d} U{sk [k € NT} toa
finite set.




Theorem

Let char(K) = 0 or char(K) = p > 3. Then the S-algebra of the
alternative polynomaials in 3 noncommuting variables
(K<X3>A1t(3),o) 1s generated as an S-algebra by the elementary
symmetric polynomsials p(li),i =1, 2,3, together with the alternating

polynomials s; = Y172 and s3 = >.z2Ts.
Alt Alt

Theorem.

The S-algebra (K(X3>A1t(3), o) is not finitely generated for fields K
of characteristic 2 or 3.

V.




Conjecture

Let char(K) = 0 or char(K) = p > d. Then the S-algebra of the
alternative polynomaials in d noncommuting variables
(K(Xd)A“(d), o) 15 generated as an S-algebra by the elementary

symmetric polynomaals p(li),i =1,---,d, together with the
alternating polynomaals s4 1 = Za:‘lifza:g and sq = Za:‘liflmg.
Alt Alt




THANK YOU FOR ATTENTION!
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